.. _DocReference: PYXS File Reference =================== This document details the functions available in PYXS scripts. An introduction is available as a separate document: :doc:`DocIntro`. In PYXS scripts, there are basically three kind of functions and methods: * Standalone functions which don't require an object. For example ``input()`` and ``deposit()``. * Methods on original layout layers (and in some weaker sense on material data objects), i.e. ``invert()`` or ``not_()``. * Methods on mask data objects, i.e. ``grow()`` and ``etch()``. Functions --------- The following standalone functions are available: .. list-table:: :widths: 15 70 :header-rows: 1 * - Function - Description * - ``all()`` - Return a pseudo-mask, covering the whole wafer * - ``below(b)`` - | Configure the lower height of the processing window for | backside processing (see below) * - ``bulk()`` - Return a pseudo-material describing the wafer body * - ``delta(d)`` - Configure the accuracy parameter (see ``below()``) * - | ``deposit(...)`` | ``grow()`` | ``diffuse()`` - | Deposit material as a uniform sheet. Equivalent to | ``all().grow(...)``. Return a material data object * - ``depth(d)`` - | Configure the depth of the processing window or the wafer | thickness for backside processing (see below) * - ``etch(...)`` - Uniform etching. Equivalent to ``all.etch(...)`` * - ``extend(x)`` - Configure the computation margin (see below) * - ``flip()`` - Start or end backside processing * - ``height(h)`` - Configure the height of the processing window (see below) * - ``layer(layer_spec)`` - | Fetche an input layer from the original layout. Return a | layer data object. * - ``layers_file(lyp_filename)`` - | Configure a ``.lyp`` layer properties file to be used on the | cross-section layout * - ``mask(layout_data)`` - | Designate the ``layout_data`` object as a litho pattern (mask). | This is the starting point for structured grow or etch | operations. Return a mask data object. * - ``output(layer_spec, material)`` - Output a material object to the output layout * - ``planarize(...)`` - Planarization ``all()`` method ^^^^^^^^^^^^^^^^ This method delivers a mask data object which covers the whole wafer. It's used as seed for the global etch and grow function only. ``below()``, ``depth()`` and ``height()`` methods ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The material operations a performed in a limited processing window, which extends a certain height over the wafer top surface (``height``), covers the wafer with a certain depth (``depth``) and extends below the wafer for backside processing (``below`` parameter). Material cannot grow outside the space above or below the wafer. Etching cannot happen deeper than ``depth``. For backside processing, ``depth`` also defines the wafer thickness. The parameters can be modified with the respective functions. All functions accept a value in micrometer units. The default value is 2 micrometers. ``bulk()`` method ^^^^^^^^^^^^^^^^^ This methods returns a material data object which represents the wafer at it's initial state. This object can be used to represent the unmodified wafer substrate and can be target of etch operations. Every call of ``bulk()`` will return a fresh object, so the object needs to be stored in a variable for later use: .. code-block:: python substrate = bulk() mask(layer).etch(0.5, into='substrate') output("1/0", substrate) ``delta()`` method ^^^^^^^^^^^^^^^^^^ Due to limitations of the underlying processor which cannot handle infinitely thin polygons, there is an accuracy limit for the creation or modification or geometrical regions. The delta parameter will basically determine that accuracy level and in some cases, for example the sheet thickness will only be accurate to that level. In addition, healing or small gaps and slivers during the processing uses the delta value as a dimension threshold, so shapes or gaps smaller than that value cannot be produced. The default value of ``delta`` is 10 database units. To modify the value, call the ``delta()`` function with the desired delta value in micrometer units. The minimum value recommended is 2 database unit. That implies that the accuracy can be increased by using a smaller database unit for the input layout. ``deposit()`` (``grow()``, ``diffuse()``) methods ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This function will deposit material uniformly. ``grow()`` and ``diffuse()`` are just synonyms. It is equivalent to ``all.grow(...)``. For a description of the parameters see the ``grow()`` method on the mask data object. The ``deposit()`` function will return a material object representing the deposited material. ``etch()`` method ^^^^^^^^^^^^^^^^^ This function will perform a uniform etch and is equivalent to ``all().etch(...)``. For a description of the parameter see the "etch()" function on the mask data object. ``extend()`` method ^^^^^^^^^^^^^^^^^^^ To reduce the likelihood of missing important features, the cross section script will sample the layout in a window around the cut line. The dimensions of that window are controlled by the ``extend`` parameter. The window extends the specified value to the left, the right, the start and end of the cut line. The default value is 2 micrometers. To catch all relevant input data in cases where positive sizing values larger than the extend parameter are used, increase the extend value by calling ``extend(e)`` with the desired value in micrometer units. In addition, the ``extend`` parameter determines the extension of an invisible part left and right of the cross section, which is included in the processing to reduce border effects. If deposition or etching happens with dimensions bigger than the extend value, artifacts start to appear at the borders of the simulation window. The extend value can then be increased to hide these effects. ``flip()`` method ^^^^^^^^^^^^^^^^^ This function will start backside processing. After this function, modifications will be applied on the back side of the wafer. Calling ``flip()`` again, will continue processing on the front side. ``layer()`` method ^^^^^^^^^^^^^^^^^^ The layer method fetches a layout layer and prepares a layout data object for further processing. The ``layer()`` function expects a single string parameter which encodes the source of the layout data. The function understands the following variants: * ``layer("17")``: Layer 17, datatype 0 * ``layer("17/6")``: Layer 17, datatype 6 * ``layer("METAL1")``: layer "METAL1" for formats that support named layers (DXF, CIF) * ``layer("METAL1 (17/0)")``: hybrid specification for GDS (layer 17, datatype 0) and "METAL1" for named-layer formats like DXF and CIF. ``layers_file()`` method ^^^^^^^^^^^^^^^^^^^^^^^^ This function specifies a layer properties file which will be loaded when the cross section has been generated. This file specifies colors, fill pattern and other parameters of the display: .. code-block:: python layers_file("/home/matthias/xsection/lyp_files/cmos1.lyp") ``mask()`` method ^^^^^^^^^^^^^^^^^ The ``mask()`` function designates the given layout data object as a litho mask. It returns a mask data object which is the starting point for further ``etch()`` or ``grow()`` operations: .. code-block:: python l1 = layer("1/0") metal = mask(l1).grow(0.3) output("1/0", metal) ``output()`` method ^^^^^^^^^^^^^^^^^^^ The ``output()`` function will write the given material to the output layout. The function expects two parameters: an output layer specification and a material object: .. code-block:: python output("1/0", metal) The layer specifications follow the same rules than for the ``layer()`` function described above. ``planarize()`` method ^^^^^^^^^^^^^^^^^^^^^^ The ``planarize()`` function removes material of the given kind (``into`` argument) down to a certain level. The level can be determined numerically or by a stop layer. The function takes a couple of keyword parameters in the Python notation (``name=value``), for example: .. code-block:: python planarize(downto=substrate, into=metal) planarize(less=0.5, into=[metal, substrate]) The keyword parameters are: .. list-table:: :widths: 10 70 :header-rows: 1 * - Name - Description * - ``into`` - | (mandatory) A single material or an array or materials. The | planarization will remove these materials selectively. * - ``downto`` - | Value is a material. Planarization stops at the topmost point | of that material. Cannot be used together with ``less`` or ``to``. * - ``less`` - | Value is a micrometer distance. Planarization will remove a | horizontal alice of the given material, stopping ``less`` | micrometers measured from the topmost point of that material | before the planarization. Cannot be used together with ``downto`` | or ``to``. * - ``to`` - | Value is micrometer z value. Planarization stops when reaching | that value. The z value is measured from the initial wafer | surface. Cannot be used together with ``downto`` or ``less``. Methods on original layout layers or material data objects ---------------------------------------------------------- The following methods are available for these objects: .. list-table:: :widths: 15 60 :header-rows: 1 * - Method - Description * - ``size(s)`` or ``size(x, y)`` - Isotropic or anisotropic sizing * - ``sized(s)`` or ``sized(x, y)`` - Out-of-place version of ``size()`` * - ``invert()`` - Invert a layer * - ``inverted()`` - Out-of-place version of ``invert()`` * - ``or_(other)`` - Boolean OR (merging) with another layer * - ``and_(other)`` - Boolean AND (intersection) with another layer * - ``xor(other)`` - Boolean XOR (symmetric difference) with another layer * - ``not_(other)`` - Boolean NOT (difference) with another layer ``size()`` method ^^^^^^^^^^^^^^^^^^^^^^ This method will apply a bias to the layout data. A bias is applied by shifting the edges to the outside (for positive bias) or the inside (for negative bias) of the figure. Applying a bias will increase or reduce the dimension of a figure by twice the value. Two versions are available: isotropic or anisotropic sizing. The first version takes one single value in micrometer units and applies this value in x and y direction. The second version takes two values for x and y direction. The ``size()`` method will modify the layer object (in-place). A non-modifying version (out-of-place) is ``sized()``. .. code-block:: python l1 = layer("1/0") l1.size(0.3) metal = mask(l1).grow(0.3) ``sized()`` method ^^^^^^^^^^^^^^^^^^ Same as ``size()``, but returns a new layout data object rather than modifying it: .. code-block:: python l1 = layer("1/0") l1_sized = l1.sized(0.3) metal = mask(l1_sized).grow(0.3) # l1 can still be used in the original form ``invert()`` method ^^^^^^^^^^^^^^^^^^^ Inverts a layer (creates layout where nothing is drawn and vice versa). This method modifies the layout data object (in-place): .. code-block:: python l1 = layer("1/0") l1.invert() metal = mask(l1).grow(0.3) A non-modifying version (out-of-place) is ``inverted()``. ``inverted()`` method ^^^^^^^^^^^^^^^^^^^^^ Returns a new layout data object representing the inverted source layout: .. code-block:: python l1 = layer("1/0") l1_inv = l1.inverted() metal = mask(l1_inv).grow(0.3) # l1 can still be used in the original form ``or_()``, ``and_()``, ``xor()``, ``not_()`` methods ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ These methods perform boolean operations. Their notation is somewhat unusual but follows the method notation of Python: .. code-block:: python l1 = layer("1/0") l2 = layer("2/0") one_of_them = l1.xor(l2) Here is the output of the operations: .. list-table:: :widths: 10 10 15 15 15 15 :header-rows: 1 * - layer ``a`` - layer ``b`` - ``a.or_(b)`` - ``a.and_(b)`` - ``a.xor(b)`` - ``a.not_(b)`` * - clear - clear - clear - clear - clear - clear * - drawn - clear - drawn - clear - drawn - drawn * - clear - drawn - drawn - clear - drawn - clear * - drawn - drawn - drawn - drawn - clear - clear Methods on mask data objects: ``grow()`` and ``etch()`` ------------------------------------------------------- The following methods are available for mask data objects: .. list-table:: :widths: 15 60 :header-rows: 1 * - Method - Description * - ``grow(...)`` - Deposition of material where this mask is present * - ``etch(...)`` - Removal of material where this mask is present ``grow()`` method ^^^^^^^^^^^^^^^^^ This method is important and has a rich parameter set, so it is described in an individual document here: :doc:`DocGrow`. ``etch()`` method ^^^^^^^^^^^^^^^^^ This method is important and has a rich parameter set, so it is described in an individual document here: :doc:`DocEtch`.