Cells Si SOI 220nm Cband#

add_fiber_array#

cspdk.si220.cband.cells.add_fiber_array(component='straight', grating_coupler='grating_coupler_elliptical', gc_port_name='o1', component_name=None, cross_section='strip', gc_rotation=-90, radius_loopback=10, **kwargs)[source]#

Returns component with south routes and grating_couplers.

You can also use pads or other terminations instead of grating couplers.

Parameters:
  • component (str | Callable[[...], Component] | dict[str, Any] | DKCell) – component spec to connect to grating couplers.

  • grating_coupler – spec for route terminations.

  • gc_port_name (str) – grating coupler input port name.

  • component_name (str | None) – optional for the label.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – cross_section function.

  • gc_rotation (float) – fiber coupler rotation in degrees. Defaults to -90.

  • radius_loopback (float) – optional radius of the loopback bend. Defaults to the cross_section.

  • kwargs – additional arguments.

Keyword Arguments:
  • bend – bend spec.

  • straight – straight spec.

  • fanout_length – if None, automatic calculation of fanout length.

  • max_y0_optical – in um.

  • with_loopback – True, adds loopback structures.

  • with_loopback_inside – True, adds loopback structures inside the component.

  • straight_separation – from edge to edge.

  • list_port_labels – None, adds TM labels to port indices in this list.

  • connected_port_list_ids – names of ports only for type 0 optical routing.

  • nb_optical_ports_lines – number of grating coupler lines.

  • force_manhattan – False

  • excluded_ports – list of port names to exclude when adding gratings.

  • grating_indices – list of grating coupler indices.

  • routing_straight – function to route.

  • routing_method – route_single.

  • optical_routing_type – None: auto, 0: no extension, 1: standard, 2: check.

  • input_port_indexes – to connect.

  • pitch – in um.

  • radius – optional radius of the bend. Defaults to the cross_section.

  • route_backwards – route from component to grating coupler or vice-versa.

Return type:

Component

import gdsfactory as gf

c = gf.components.crossing()
cc = gf.routing.add_fiber_array(
    component=c,
    optical_routing_type=2,
    grating_coupler=gf.components.grating_coupler_elliptical_te,
    with_loopback=False
)
cc.plot()

(Source code)

import cspdk

c = cspdk.si220.cband.cells.add_fiber_array(component='straight', grating_coupler='grating_coupler_elliptical', gc_port_name='o1', cross_section='strip', gc_rotation=-90, radius_loopback=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-2.png

add_fiber_single#

cspdk.si220.cband.cells.add_fiber_single(component='straight', grating_coupler='grating_coupler_elliptical', gc_port_name='o1', component_name=None, cross_section='strip', taper=None, input_port_names=None, pitch=70, with_loopback=True, loopback_spacing=100.0, **kwargs)[source]#

Returns component with south routes and grating_couplers.

You can also use pads or other terminations instead of grating couplers.

Parameters:
  • component (str | Callable[[...], Component] | dict[str, Any] | DKCell) – component spec to connect to grating couplers.

  • grating_coupler – spec for route terminations.

  • gc_port_name (str) – grating coupler input port name.

  • component_name (str | None) – optional for the label.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – cross_section function.

  • taper (str | Callable[[...], Component] | dict[str, Any] | DKCell | None) – taper spec.

  • input_port_names (list[str] | tuple[str, ...] | None) – list of input port names to connect to grating couplers.

  • pitch (float) – spacing between fibers.

  • with_loopback (bool) – adds loopback structures.

  • loopback_spacing (float) – spacing between loopback and test structure.

  • kwargs – additional arguments.

Keyword Arguments:
  • bend – bend spec.

  • straight – straight spec.

  • fanout_length – if None, automatic calculation of fanout length.

  • max_y0_optical – in um.

  • with_loopback – True, adds loopback structures.

  • straight_separation – from edge to edge.

  • list_port_labels – None, adds TM labels to port indices in this list.

  • connected_port_list_ids – names of ports only for type 0 optical routing.

  • nb_optical_ports_lines – number of grating coupler lines.

  • force_manhattan – False

  • excluded_ports – list of port names to exclude when adding gratings.

  • grating_indices – list of grating coupler indices.

  • routing_straight – function to route.

  • routing_method – route_single.

  • optical_routing_type – None: auto, 0: no extension, 1: standard, 2: check.

  • gc_rotation – fiber coupler rotation in degrees. Defaults to -90.

  • input_port_indexes – to connect.

Return type:

Component

import gdsfactory as gf

c = gf.components.crossing()
cc = gf.routing.add_fiber_array(
    component=c,
    optical_routing_type=2,
    grating_coupler=gf.components.grating_coupler_elliptical_te,
    with_loopback=False
)
cc.plot()

(Source code)

import cspdk

c = cspdk.si220.cband.cells.add_fiber_single(component='straight', grating_coupler='grating_coupler_elliptical', gc_port_name='o1', cross_section='strip', pitch=70, with_loopback=True, loopback_spacing=100.0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-4.png

add_pads_top#

cspdk.si220.cband.cells.add_pads_top(component='straight_metal', port_names=None, component_name=None, cross_section='metal_routing', pad_port_name='e1', pad='pad', bend='wire_corner', straight_separation=15.0, pad_pitch=100.0, taper=None, port_type='electrical', allow_width_mismatch=True, fanout_length=80, route_width=0, **kwargs)[source]#

Returns new component with ports connected top pads.

Parameters:
  • component (str | Callable[[...], Component] | dict[str, Any] | DKCell) – component spec to connect to.

  • port_names (Sequence[str] | None) – list of port names to connect to pads.

  • component_name (str | None) – optional for the label.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – cross_section function.

  • pad_port_name (str) – pad port name.

  • pad (str | Callable[[...], Component] | dict[str, Any] | DKCell) – pad function.

  • bend (str | Callable[[...], Component] | dict[str, Any] | DKCell) – bend function.

  • straight_separation (float) – from edge to edge.

  • pad_pitch (float) – spacing between pads.

  • taper (str | Callable[[...], Component] | dict[str, Any] | DKCell | None) – taper function.

  • port_type (str) – port type.

  • allow_width_mismatch (bool) – if True, allows width mismatch.

  • fanout_length (float | None) – length of the fanout.

  • route_width (float | list[float] | None) – width of the route.

  • kwargs – additional arguments.

Return type:

Component

import gdsfactory as gf
c = gf.c.nxn(
    xsize=600,
    ysize=200,
    north=2,
    south=3,
    wg_width=10,
    layer="M3",
    port_type="electrical",
)
cc = gf.routing.add_pads_top(component=c, port_names=("e1", "e4"), fanout_length=50)
cc.plot()

(Source code)

import cspdk

c = cspdk.si220.cband.cells.add_pads_top(component='straight_metal', cross_section='metal_routing', pad_port_name='e1', pad='pad', bend='wire_corner', straight_separation=15.0, pad_pitch=100.0, port_type='electrical', allow_width_mismatch=True, fanout_length=80, route_width=0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-6.png

bend_euler#

cspdk.si220.cband.cells.bend_euler(radius=None, angle=90, p=0.5, width=None, cross_section='strip', allow_min_radius_violation=False)[source]#

Regular degree euler bend.

Parameters:
  • radius (float | None) – in um. Defaults to cross_section_radius.

  • angle (float) – total angle of the curve.

  • p (float) – Proportion of the curve that is an Euler curve.

  • width (float | None) – width to use. Defaults to cross_section.width.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – specification (CrossSection, string, CrossSectionFactory dict).

  • allow_min_radius_violation (bool) – if True allows radius to be smaller than cross_section radius.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.bend_euler(angle=90, p=0.5, cross_section='strip', allow_min_radius_violation=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-7.png

bend_metal#

cspdk.si220.cband.cells.bend_metal(radius=None, angle=90, width=None, cross_section='metal_routing')[source]#

Regular degree euler bend.

Parameters:
  • radius (float | None)

  • angle (float)

  • width (float | None)

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection)

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.bend_metal(angle=90, cross_section='metal_routing').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-8.png

bend_s#

cspdk.si220.cband.cells.bend_s(size=(11, 1.8), cross_section='strip', width=None, allow_min_radius_violation=False)[source]#

Return S bend with bezier curve.

stores min_bend_radius property in self.info[‘min_bend_radius’] min_bend_radius depends on height and length

Parameters:
  • size (tuple[float, float]) – in x and y direction.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – spec.

  • width (float | None) – width of the waveguide. If None, it will use the width of the cross_section.

  • allow_min_radius_violation (bool) – allows min radius violations.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.bend_s(size=(11, 1.8), cross_section='strip', allow_min_radius_violation=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-9.png

bend_s_metal#

cspdk.si220.cband.cells.bend_s_metal(size=(11, 1.8), cross_section='metal_routing', width=None, allow_min_radius_violation=True)[source]#

Return S bend with bezier curve.

stores min_bend_radius property in self.info[‘min_bend_radius’] min_bend_radius depends on height and length

Parameters:
  • size (tuple[float, float]) – in x and y direction.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – spec.

  • width (float | None) – width of the waveguide. If None, it will use the width of the cross_section.

  • allow_min_radius_violation (bool) – allows min radius violations.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.bend_s_metal(size=(11, 1.8), cross_section='metal_routing', allow_min_radius_violation=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-10.png

compass#

cspdk.si220.cband.cells.compass(size=(4, 2), layer='PAD', port_type=None, port_inclusion=0.0, port_orientations=(180, 90, 0, -90), auto_rename_ports=True)[source]#

Rectangle with ports on each edge (north, south, east, and west).

Parameters:
  • size (tuple[float, float]) – rectangle size.

  • layer (tuple[int, int] | str | int | LayerEnum) – tuple (int, int).

  • port_type (str | None) – optical, electrical.

  • port_inclusion (float) – from edge.

  • port_orientations (tuple[int, ...] | list[int] | None) – list of port_orientations to add. None does not add ports.

  • auto_rename_ports (bool) – auto rename ports.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.compass(size=(4, 2), layer='PAD', port_inclusion=0.0, port_orientations=(180, 90, 0, -90), auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-11.png

coupler#

cspdk.si220.cband.cells.coupler(length=14.5, gap=0.27)[source]#

Returns Symmetric coupler.

Parameters:
  • length (float) – of coupling region in um.

  • gap (float) – of coupling region in um.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.coupler(length=14.5, gap=0.27).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-12.png

coupler_rib#

cspdk.si220.cband.cells.coupler_rib(length=20, gap=0.27)[source]#

Returns Symmetric coupler.

Parameters:
  • length (float) – of coupling region in um.

  • gap (float) – of coupling region in um.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.coupler_rib(length=20, gap=0.27).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-13.png

coupler_ring#

cspdk.si220.cband.cells.coupler_ring(length_x=4, gap=0.27, radius=5, bend='bend_euler', straight='straight', cross_section='strip', length_extension=10)[source]#

Returns Coupler for ring.

Parameters:
  • length_x (float) – length of the parallel coupled straight waveguides.

  • gap (float) – gap between for coupler.

  • radius (float) – for the bend and coupler.

  • bend (str | Callable[[...], Component] | dict[str, Any] | DKCell) – 90 degrees bend spec.

  • straight (str | Callable[[...], Component] | dict[str, Any] | DKCell) – straight spec.

  • cross_section (str) – cross_section spec.

  • length_extension (float) – length extension for the coupler.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.coupler_ring(length_x=4, gap=0.27, radius=5, bend='bend_euler', straight='straight', cross_section='strip', length_extension=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-14.png

crossing#

cspdk.si220.cband.cells.crossing()[source]#

SOI220nm_1550nm_TE_STRIP_Waveguide_Crossing fixed cell.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.crossing().copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-15.png

crossing_rib#

cspdk.si220.cband.cells.crossing_rib()[source]#

SOI220nm_1550nm_TE_RIB_Waveguide_Crossing fixed cell.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.crossing_rib().copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-16.png

die#

cspdk.si220.cband.cells.die(size=(16000.0, 3000.0))[source]#

A die.

Parameters:

size (tuple[float, float])

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.die(size=(16000.0, 3000.0)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-17.png

die_with_pads#

cspdk.si220.cband.cells.die_with_pads(size=(11470.0, 4900.0), ngratings=14, npads=31, grating_pitch=250.0, pad_pitch=300.0, grating_coupler='grating_coupler_rectangular', cross_section='strip', pad='pad', layer_floorplan='FLOORPLAN', edge_to_pad_distance=150.0, edge_to_grating_distance=150.0, with_loopback=True)[source]#

A die with grating couplers and pads.

Parameters:
  • size (tuple[float, float]) – the size of the die, in um.

  • ngratings (int) – the number of grating couplers.

  • npads (int) – the number of pads.

  • grating_pitch (float) – the pitch of the grating couplers, in um.

  • pad_pitch (float) – the pitch of the pads, in um.

  • grating_coupler (str | Callable[[...], Component] | dict[str, Any] | DKCell | None) – the grating coupler component. None skips the grating couplers.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – the cross section.

  • pad (str | Callable[[...], Component] | dict[str, Any] | DKCell) – the pad component.

  • layer_floorplan (tuple[int, int] | str | int | LayerEnum) – the layer of the floorplan.

  • edge_to_pad_distance (float) – the distance from the edge to the pads, in um.

  • edge_to_grating_distance (float) – the distance from the edge to the grating couplers, in um.

  • with_loopback (bool) – if True, adds a loopback between edge GCs. Only works for rotation = 90 for now.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.die_with_pads(size=(11470.0, 4900.0), ngratings=14, npads=31, grating_pitch=250.0, pad_pitch=300.0, grating_coupler='grating_coupler_rectangular', cross_section='strip', pad='pad', layer_floorplan='FLOORPLAN', edge_to_pad_distance=150.0, edge_to_grating_distance=150.0, with_loopback=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-18.png

grating_coupler_elliptical#

cspdk.si220.cband.cells.grating_coupler_elliptical(wavelength=1.55, grating_line_width=0.315, cross_section='strip')[source]#

A grating coupler with curved but parallel teeth.

Parameters:
  • wavelength (float) – the center wavelength for which the grating is designed

  • grating_line_width – the line width of the grating

  • cross_section – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.grating_coupler_elliptical(wavelength=1.55, grating_line_width=0.315, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-19.png

grating_coupler_rectangular#

cspdk.si220.cband.cells.grating_coupler_rectangular(period=0.63, n_periods=60, length_taper=350.0, wavelength=1.55, cross_section='strip')[source]#

A grating coupler with straight and parallel teeth.

Parameters:
  • period – the period of the grating

  • n_periods (int) – the number of grating teeth

  • length_taper (float) – the length of the taper tapering up to the grating

  • wavelength (float) – the center wavelength for which the grating is designed

  • cross_section – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.grating_coupler_rectangular(period=0.63, n_periods=60, length_taper=350.0, wavelength=1.55, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-20.png

grating_coupler_rectangular_rib#

cspdk.si220.cband.cells.grating_coupler_rectangular_rib(*, period=0.5, n_periods=60, length_taper=350.0, wavelength=1.55, cross_section='rib')#

A grating coupler with straight and parallel teeth.

Parameters:
  • period – the period of the grating

  • n_periods (int) – the number of grating teeth

  • length_taper (float) – the length of the taper tapering up to the grating

  • wavelength (float) – the center wavelength for which the grating is designed

  • cross_section – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.grating_coupler_rectangular_rib(period=0.5, n_periods=60, length_taper=350.0, wavelength=1.55, cross_section='rib').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-21.png

heater#

cspdk.si220.cband.cells.heater()[source]#

Heater fixed cell.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.heater().copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-22.png

mmi1x2#

cspdk.si220.cband.cells.mmi1x2(width=None, width_taper=1.5, length_taper=20.0, length_mmi=31.0, width_mmi=6.0, gap_mmi=1.64, cross_section='strip')[source]#

An mmi1x2.

An mmi1x2 is a splitter that splits a single input to two outputs

Parameters:
  • width (float | None) – the width of the waveguides connecting at the mmi ports.

  • width_taper (float) – the width at the base of the mmi body.

  • length_taper (float) – the length of the tapers going towards the mmi body.

  • length_mmi (float) – the length of the mmi body.

  • width_mmi (float) – the width of the mmi body.

  • gap_mmi (float) – the gap between the tapers at the mmi body.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.mmi1x2(width_taper=1.5, length_taper=20.0, length_mmi=31.0, width_mmi=6.0, gap_mmi=1.64, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-23.png

mmi1x2_rib#

cspdk.si220.cband.cells.mmi1x2_rib(width=None, width_taper=1.5, length_taper=20.0, *, length_mmi=32.7, width_mmi=6.0, gap_mmi=1.64, cross_section='rib')#

An mmi1x2.

An mmi1x2 is a splitter that splits a single input to two outputs

Parameters:
  • width (float | None) – the width of the waveguides connecting at the mmi ports.

  • width_taper (float) – the width at the base of the mmi body.

  • length_taper (float) – the length of the tapers going towards the mmi body.

  • length_mmi (float) – the length of the mmi body.

  • width_mmi (float) – the width of the mmi body.

  • gap_mmi (float) – the gap between the tapers at the mmi body.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.mmi1x2_rib(width_taper=1.5, length_taper=20.0, length_mmi=32.7, width_mmi=6.0, gap_mmi=1.64, cross_section='rib').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-24.png

mmi2x2#

cspdk.si220.cband.cells.mmi2x2(width=None, width_taper=1.5, length_taper=20.0, length_mmi=42.5, width_mmi=6.0, gap_mmi=0.5, cross_section='strip')[source]#

An mmi2x2.

An mmi2x2 is a 2x2 splitter

Parameters:
  • width (float | None) – the width of the waveguides connecting at the mmi ports

  • width_taper (float) – the width at the base of the mmi body

  • length_taper (float) – the length of the tapers going towards the mmi body

  • length_mmi (float) – the length of the mmi body

  • width_mmi (float) – the width of the mmi body

  • gap_mmi (float) – the gap between the tapers at the mmi body

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.mmi2x2(width_taper=1.5, length_taper=20.0, length_mmi=42.5, width_mmi=6.0, gap_mmi=0.5, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-25.png

mmi2x2_rib#

cspdk.si220.cband.cells.mmi2x2_rib(width=None, width_taper=1.5, length_taper=20.0, *, length_mmi=44.8, width_mmi=6.0, gap_mmi=0.53, cross_section='rib')#

An mmi2x2.

An mmi2x2 is a 2x2 splitter

Parameters:
  • width (float | None) – the width of the waveguides connecting at the mmi ports

  • width_taper (float) – the width at the base of the mmi body

  • length_taper (float) – the length of the tapers going towards the mmi body

  • length_mmi (float) – the length of the mmi body

  • width_mmi (float) – the width of the mmi body

  • gap_mmi (float) – the gap between the tapers at the mmi body

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.mmi2x2_rib(width_taper=1.5, length_taper=20.0, length_mmi=44.8, width_mmi=6.0, gap_mmi=0.53, cross_section='rib').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-26.png

mzi#

cspdk.si220.cband.cells.mzi(delta_length=10, bend='bend_euler', straight='straight', splitter='coupler', combiner=None, port_e1_splitter='o3', port_e0_splitter='o4', port_e1_combiner='o3', port_e0_combiner='o4', cross_section='strip')[source]#

Mzi.

Parameters:
  • delta_length (float) – bottom arm vertical extra length.

  • bend (str | Callable[[...], Component] | dict[str, Any] | DKCell) – 90 degrees bend library.

  • straight (str | Callable[[...], Component] | dict[str, Any] | DKCell) – straight function.

  • splitter (str | Callable[[...], Component] | dict[str, Any] | DKCell) – splitter function.

  • combiner (str | Callable[[...], Component] | dict[str, Any] | DKCell | None) – combiner function.

  • port_e1_splitter (str) – east top splitter port.

  • port_e0_splitter (str) – east bot splitter port.

  • port_e1_combiner (str) – east top combiner port.

  • port_e0_combiner (str) – east bot combiner port.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – for routing (sxtop/sxbot to combiner).

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.mzi(delta_length=10, bend='bend_euler', straight='straight', splitter='coupler', port_e1_splitter='o3', port_e0_splitter='o4', port_e1_combiner='o3', port_e0_combiner='o4', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-27.png

pack_doe#

cspdk.si220.cband.cells.pack_doe(doe, settings, do_permutations=False, function=None, **kwargs)[source]#

Packs a component DOE (Design of Experiment) using pack.

Parameters:
  • doe (str | Callable[[...], Component] | dict[str, Any] | DKCell) – function to return Components.

  • settings (dict[str, tuple[Any, ...]]) – component settings.

  • do_permutations (bool) – for each setting.

  • function (str | Callable[[...], Component] | dict[str, Any] | None) – to apply (add padding, grating couplers).

  • kwargs – for pack.

Keyword Arguments:
  • spacing – Minimum distance between adjacent shapes.

  • aspect_ratio – (width, height) ratio of the rectangular bin.

  • max_size – Limits the size into which the shapes will be packed.

  • sort_by_area – Pre-sorts the shapes by area.

  • density – Values closer to 1 pack tighter but require more computation.

  • precision – Desired precision for rounding vertex coordinates.

  • text – Optional function to add text labels.

  • text_prefix – for labels. For example. ‘A’ for ‘A1’, ‘A2’…

  • text_offsets – relative to component size info anchor. Defaults to center.

  • text_anchors – relative to component (ce cw nc ne nw sc se sw center cc).

  • name_prefix – for each packed component (avoids the Unnamed cells warning). Note that the suffix contains a uuid so the name will not be deterministic.

  • rotation – for each component in degrees.

  • h_mirror – horizontal mirror in y axis (x, 1) (1, 0). This is the most common.

  • v_mirror – vertical mirror using x axis (1, y) (0, y).

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.pack_doe(do_permutations=False).copy()
c.draw_ports()
c.plot()

(Source code)

pack_doe_grid#

cspdk.si220.cband.cells.pack_doe_grid(doe, settings, do_permutations=False, function=None, with_text=False, **kwargs)[source]#

Packs a component DOE (Design of Experiment) using grid.

Parameters:
  • doe (str | Callable[[...], Component] | dict[str, Any] | DKCell) – function to return Components.

  • settings (dict[str, tuple[Any, ...]]) – component settings.

  • do_permutations (bool) – for each setting.

  • function (str | Callable[[...], Component] | dict[str, Any] | None) – to apply to component (add padding, grating couplers).

  • with_text (bool) – includes text label.

  • kwargs – for grid.

Keyword Arguments:
  • spacing – between adjacent elements on the grid, can be a tuple for different distances in height and width.

  • separation – If True, guarantees elements are separated with fixed spacing if False, elements are spaced evenly along a grid.

  • shape – x, y shape of the grid (see np.reshape). If no shape and the list is 1D, if np.reshape were run with (1, -1).

  • align_x – {‘x’, ‘xmin’, ‘xmax’} for x (column) alignment along.

  • align_y – {‘y’, ‘ymin’, ‘ymax’} for y (row) alignment along.

  • edge_x – {‘x’, ‘xmin’, ‘xmax’} for x (column) (ignored if separation = True).

  • edge_y – {‘y’, ‘ymin’, ‘ymax’} for y (row) (ignored if separation = True).

  • rotation – for each component in degrees.

  • h_mirror – horizontal mirror y axis (x, 1) (1, 0). most common mirror.

  • v_mirror – vertical mirror using x axis (1, y) (0, y).

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.pack_doe_grid(do_permutations=False, with_text=False).copy()
c.draw_ports()
c.plot()

(Source code)

pad#

cspdk.si220.cband.cells.pad(size=(90.0, 90.0), layer='PAD', port_inclusion=0, port_orientation=0)[source]#

Returns rectangular pad with ports.

Parameters:
  • size (tuple[float, float]) – x, y size.

  • layer (tuple[int, int] | str | int | LayerEnum) – pad layer.

  • bbox_layers – list of layers.

  • bbox_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • port_inclusion (float) – from edge.

  • port_orientation (float) – in degrees.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.pad(size=(90.0, 90.0), layer='PAD', port_inclusion=0, port_orientation=0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-30.png

rectangle#

cspdk.si220.cband.cells.rectangle(size=(4, 2), layer='PAD', centered=False, port_type=None, port_orientations=(180, 90, 0, -90))[source]#

Returns a rectangle.

Parameters:
  • size (tuple[float, float]) – (tuple) Width and height of rectangle.

  • layer (tuple[int, int] | str | int | LayerEnum) – Specific layer to put polygon geometry on.

  • centered (bool) – True sets center to (0, 0), False sets south-west to (0, 0).

  • port_type (str | None) – optical, electrical.

  • port_orientations (tuple[int, ...] | list[int] | None) – list of port_orientations to add. None adds no ports.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.rectangle(size=(4, 2), layer='PAD', centered=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-31.png

ring_double#

cspdk.si220.cband.cells.ring_double(gap=0.27, gap_top=None, gap_bot=None, radius=10.0, length_x=0.01, length_y=0.01, cross_section='strip', length_extension=10.0)[source]#

Returns a double bus ring.

two couplers (ct: top, cb: bottom) connected with two vertical straights (sl: left, sr: right)

Parameters:
  • gap (float) – gap between for coupler.

  • gap_top (float | None) – gap for the top coupler. Defaults to gap.

  • gap_bot (float | None) – gap for the bottom coupler. Defaults to gap.

  • radius (float) – for the bend and coupler.

  • length_x (float) – ring coupler length.

  • length_y (float) – vertical straight length.

  • bend – 90 degrees bend spec.

  • straight – straight spec.

  • coupler_ring – ring coupler spec.

  • coupler_ring_top – top ring coupler spec. Defaults to coupler_ring.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – cross_section spec.

  • length_extension (float) – straight length extension at the end of the coupler bottom ports.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.ring_double(gap=0.27, radius=10.0, length_x=0.01, length_y=0.01, cross_section='strip', length_extension=10.0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-32.png

ring_single#

cspdk.si220.cband.cells.ring_single(gap=0.27, radius=10.0, length_x=4.0, length_y=0.6, cross_section='strip', length_extension=10.0)[source]#

Returns a single ring.

ring coupler (cb: bottom) connects to two vertical straights (sl: left, sr: right), two bends (bl, br) and horizontal straight (wg: top)

Parameters:
  • gap (float) – gap between for coupler.

  • radius (float) – for the bend and coupler.

  • length_x (float) – ring coupler length.

  • length_y (float) – vertical straight length.

  • coupler_ring – ring coupler spec.

  • bend – 90 degrees bend spec.

  • straight – straight spec.

  • coupler_ring – ring coupler spec.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – cross_section spec.

  • length_extension (float) – straight length extension at the end of the coupler bottom ports.

Return type:

Component

          xxxxxxxxxxxxx
      xxxxx           xxxx
    xxx                   xxx
  xxx                       xxx
 xx                           xxx
 x                             xxx
xx                              xx▲
xx                              xx│length_y
xx                              xx▼
xx                             xx
 xx          length_x          x
  xx     ◄───────────────►    x
   xx                       xxx
     xx                   xxx
      xxx──────▲─────────xxx
               │gap
       o1──────▼─────────o2
import cspdk

c = cspdk.si220.cband.cells.ring_single(gap=0.27, radius=10.0, length_x=4.0, length_y=0.6, cross_section='strip', length_extension=10.0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-33.png

spiral#

cspdk.si220.cband.cells.spiral(length=100, cross_section='strip', spacing=3, n_loops=6)[source]#

Returns a spiral double (spiral in, and then out).

Parameters:
  • length (float) – length of the spiral straight section.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – cross_section component.

  • spacing (float) – spacing between the spiral loops.

  • n_loops (int) – number of loops.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.spiral(length=100, cross_section='strip', spacing=3, n_loops=6).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-34.png

spiral_racetrack#

cspdk.si220.cband.cells.spiral_racetrack(min_radius=None, straight_length=20.0, spacings=(2, 2, 3, 3, 2, 2), straight='straight', bend='bend_euler', bend_s='bend_s', cross_section='strip', cross_section_s=None, extra_90_deg_bend=False, allow_min_radius_violation=False)[source]#

Returns Racetrack-Spiral.

Parameters:
  • min_radius (float | None) – smallest radius in um.

  • straight_length (float) – length of the straight segments in um.

  • spacings (Sequence[float]) – space between the center of neighboring waveguides in um.

  • straight (str | Callable[[...], Component] | dict[str, Any] | DKCell) – factory to generate the straight segments.

  • bend (str | Callable[[...], Component] | dict[str, Any] | DKCell) – factory to generate the bend segments.

  • bend_s (str | Callable[[...], Component] | dict[str, Any] | DKCell) – factory to generate the s-bend segments.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – cross-section of the waveguides.

  • cross_section_s (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection | None) – cross-section of the s bend waveguide (optional).

  • extra_90_deg_bend (bool) – if True, we add an additional straight + 90 degree bent at the output, so the output port is looking down.

  • allow_min_radius_violation (bool) – if True, will allow the s-bend to have a smaller radius than the minimum radius.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.spiral_racetrack(straight_length=20.0, spacings=(2, 2, 3, 3, 2, 2), straight='straight', bend='bend_euler', bend_s='bend_s', cross_section='strip', extra_90_deg_bend=False, allow_min_radius_violation=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-35.png

spiral_racetrack_heater#

cspdk.si220.cband.cells.spiral_racetrack_heater(spacing=4.0, num=8, straight_length=100, cross_section='strip')[source]#

Returns spiral racetrack with a heater above.

based on https://doi.org/10.1364/OL.400230 .

Parameters:
  • spacing (float) – center to center spacing between the waveguides.

  • num (int) – number of spiral loops.

  • straight_length (float) – length of the straight segments.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – cross_section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.spiral_racetrack_heater(spacing=4.0, num=8, straight_length=100, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-36.png

straight#

cspdk.si220.cband.cells.straight(length=10, cross_section='strip', width=None, npoints=2)[source]#

Returns a Straight waveguide.

Parameters:
  • length (float) – straight length (um).

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – specification (CrossSection, string or dict).

  • width (float | None) – width of the waveguide. If None, it will use the width of the cross_section.

  • npoints (int) – number of points.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.straight(length=10, cross_section='strip', npoints=2).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-37.png

straight_heater_meander#

cspdk.si220.cband.cells.straight_heater_meander(length=320.0, heater_width=2.5, spacing=2, cross_section='strip', layer_heater='HEATER', via_stack='via_stack_heater_mtop', n=3, port_orientation1=None, port_orientation2=None, radius=None)[source]#

Returns a meander based heater.

based on SungWon Chung, Makoto Nakai, and Hossein Hashemi, Low-power thermo-optic silicon modulator for large-scale photonic integrated systems Opt. Express 27, 13430-13459 (2019) https://www.osapublishing.org/oe/abstract.cfm?URI=oe-27-9-13430

Parameters:
  • length (float) – phase shifter length.

  • heater_width (float) – width of the heater.

  • spacing (float) – waveguide spacing (center to center).

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – for waveguide.

  • layer_heater (tuple[int, int] | str | int | LayerEnum) – for top heater, if None, it does not add a heater.

  • via_stack (str | Callable[[...], Component] | dict[str, Any] | DKCell | None) – for the heater to via_stack metal.

  • n (int | None) – number of meanders.

  • port_orientation1 (float | None) – orientation of the first port. None for all orientations.

  • port_orientation2 (float | None) – orientation of the second port. None for all orientations.

  • radius (float | None) – radius of the meander.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.straight_heater_meander(length=320.0, heater_width=2.5, spacing=2, cross_section='strip', layer_heater='HEATER', via_stack='via_stack_heater_mtop', n=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-38.png

straight_heater_metal#

cspdk.si220.cband.cells.straight_heater_metal(length=320.0, length_undercut_spacing=6.0, length_undercut=30.0, length_straight=0.1, length_straight_input=15.0, with_undercut=False, port_orientation1=None, port_orientation2=None)[source]#

Returns a thermal phase shifter.

dimensions from https://doi.org/10.1364/OE.27.010456

Parameters:
  • length (float) – phase shifter length.

  • length_undercut_spacing (float) – spacing between the waveguide and the undercut.

  • length_undercut (float) – undercut length.

  • length_straight (float) – straight length.

  • length_straight_input (float) – straight length input.

  • with_undercut (bool) – isolation trenches for higher efficiency.

  • port_orientation1 (int | None) – orientation of the first port. None for all orientations.

  • port_orientation2 (int | None) – orientation of the second port. None for all orientations.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.straight_heater_metal(length=320.0, length_undercut_spacing=6.0, length_undercut=30.0, length_straight=0.1, length_straight_input=15.0, with_undercut=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-39.png

straight_metal#

cspdk.si220.cband.cells.straight_metal(length=10, cross_section='metal_routing', width=None)[source]#

Returns a Straight waveguide.

Parameters:
  • length (float) – straight length (um).

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – specification (CrossSection, string or dict).

  • width (float | None) – width of the waveguide. If None, it will use the width of the cross_section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.straight_metal(length=10, cross_section='metal_routing').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-40.png

straight_rib#

cspdk.si220.cband.cells.straight_rib(length=10, cross_section='rib', width=None)[source]#

Returns a Straight waveguide.

Parameters:
  • length (float) – straight length (um).

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – specification (CrossSection, string or dict).

  • width (float | None) – width of the waveguide. If None, it will use the width of the cross_section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.straight_rib(length=10, cross_section='rib').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-41.png

straight_strip#

cspdk.si220.cband.cells.straight_strip(length=10, cross_section='strip', width=None, npoints=2)[source]#

Returns a Straight waveguide.

Parameters:
  • length (float) – straight length (um).

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – specification (CrossSection, string or dict).

  • width (float | None) – width of the waveguide. If None, it will use the width of the cross_section.

  • npoints (int) – number of points.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.straight_strip(length=10, cross_section='strip', npoints=2).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-42.png

taper#

cspdk.si220.cband.cells.taper(length=10.0, width1=0.45, width2=None, cross_section='strip')[source]#

Linear taper, which tapers only the main cross section section.

Parameters:
  • length (float) – taper length.

  • width1 (float) – width of the west/left port.

  • width2 (float | None) – width of the east/right port. Defaults to width1.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – specification (CrossSection, string, CrossSectionFactory dict).

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.taper(length=10.0, width1=0.45, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-43.png

taper_metal#

cspdk.si220.cband.cells.taper_metal(length=10.0, width1=10, width2=None, cross_section='metal_routing')[source]#

Linear taper, which tapers only the main cross section section.

Parameters:
  • length (float) – taper length.

  • width1 (float) – width of the west/left port.

  • width2 (float | None) – width of the east/right port. Defaults to width1.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – specification (CrossSection, string, CrossSectionFactory dict).

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.taper_metal(length=10.0, width1=10, cross_section='metal_routing').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-44.png

taper_strip_to_ridge#

cspdk.si220.cband.cells.taper_strip_to_ridge(length=10.0, width1=0.5, width2=0.5, w_slab1=0.2, w_slab2=10.45, cross_section='strip')[source]#

A taper between strip and ridge.

This is a transition between two distinct cross sections

Parameters:
  • length (float) – the length of the taper.

  • width1 (float) – the input width of the taper.

  • width2 (float) – the output width of the taper.

  • w_slab1 (float) – the input slab width of the taper.

  • w_slab2 (float) – the output slab width of the taper.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.taper_strip_to_ridge(length=10.0, width1=0.5, width2=0.5, w_slab1=0.2, w_slab2=10.45, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-45.png

text_rectangular#

cspdk.si220.cband.cells.text_rectangular(text='abc', size=3, justify='left', layer='PAD')[source]#

Pixel based font, guaranteed to be manhattan, without acute angles.

Parameters:
  • text (str) – string.

  • size (float) – pixel size.

  • justify (str) – left, right or center.

  • layer (tuple[int, int] | str | int | LayerEnum) – for text.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.text_rectangular(text='abc', size=3, justify='left', layer='PAD').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-46.png

text_rectangular_multi_layer#

cspdk.si220.cband.cells.text_rectangular_multi_layer(text='abc', layers=('WG', 'PAD'), text_factory='text_rectangular', **kwargs)[source]#

Returns rectangular text in different layers.

Parameters:
  • text (str) – string of text.

  • layers (Sequence[tuple[int, int] | str | int | LayerEnum]) – list of layers to replicate the text.

  • text_factory (str | Callable[[...], Component] | dict[str, Any] | DKCell) – function to create the text Components.

  • kwargs (Any) – keyword arguments for text_factory.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.text_rectangular_multi_layer(text='abc', layers=('WG', 'PAD'), text_factory='text_rectangular').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-47.png

trans_rib10#

cspdk.si220.cband.cells.trans_rib10(*, length=10, width1=0.5, width2=0.5, w_slab1=0.2, w_slab2=10.45, cross_section='strip')#

A taper between strip and ridge.

This is a transition between two distinct cross sections

Parameters:
  • length (float) – the length of the taper.

  • width1 (float) – the input width of the taper.

  • width2 (float) – the output width of the taper.

  • w_slab1 (float) – the input slab width of the taper.

  • w_slab2 (float) – the output slab width of the taper.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.trans_rib10(length=10, width1=0.5, width2=0.5, w_slab1=0.2, w_slab2=10.45, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-48.png

trans_rib20#

cspdk.si220.cband.cells.trans_rib20(*, length=20, width1=0.5, width2=0.5, w_slab1=0.2, w_slab2=10.45, cross_section='strip')#

A taper between strip and ridge.

This is a transition between two distinct cross sections

Parameters:
  • length (float) – the length of the taper.

  • width1 (float) – the input width of the taper.

  • width2 (float) – the output width of the taper.

  • w_slab1 (float) – the input slab width of the taper.

  • w_slab2 (float) – the output slab width of the taper.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.trans_rib20(length=20, width1=0.5, width2=0.5, w_slab1=0.2, w_slab2=10.45, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-49.png

trans_rib50#

cspdk.si220.cband.cells.trans_rib50(*, length=50, width1=0.5, width2=0.5, w_slab1=0.2, w_slab2=10.45, cross_section='strip')#

A taper between strip and ridge.

This is a transition between two distinct cross sections

Parameters:
  • length (float) – the length of the taper.

  • width1 (float) – the input width of the taper.

  • width2 (float) – the output width of the taper.

  • w_slab1 (float) – the input slab width of the taper.

  • w_slab2 (float) – the output slab width of the taper.

  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – a cross section or its name or a function generating a cross section.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.trans_rib50(length=50, width1=0.5, width2=0.5, w_slab1=0.2, w_slab2=10.45, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-50.png

via_stack_heater_mtop#

cspdk.si220.cband.cells.via_stack_heater_mtop(size=(20.0, 10.0))[source]#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:

size (tuple[float, float]) – of the layers.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.via_stack_heater_mtop(size=(20.0, 10.0)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-51.png

wire_corner#

cspdk.si220.cband.cells.wire_corner(cross_section='metal_routing', width=None)[source]#

Returns 45 degrees electrical corner wire.

Parameters:
  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – spec.

  • width (float | None) – optional width. Defaults to cross_section width.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.wire_corner(cross_section='metal_routing').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-52.png

wire_corner45#

cspdk.si220.cband.cells.wire_corner45(cross_section='metal_routing', radius=10, width=None, layer=None, with_corner90_ports=True)[source]#

Returns 90 degrees electrical corner wire.

Parameters:
  • cross_section (CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection | DCrossSection) – spec.

  • radius (float) – ignored.

  • width (float | None) – optional width. Defaults to cross_section width.

  • layer (tuple[int, int] | str | int | LayerEnum | None) – ignored.

  • with_corner90_ports (bool) – if True, adds ports at 90 degrees.

Return type:

Component

import cspdk

c = cspdk.si220.cband.cells.wire_corner45(cross_section='metal_routing', radius=10, with_corner90_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/cells_si220_cband-53.png