Source code for qpdk.cells.capacitor

"""Capacitive coupler components."""

from __future__ import annotations

from functools import partial
from itertools import chain
from math import ceil, floor

import gdsfactory as gf
from gdsfactory.component import Component
from gdsfactory.typings import CrossSectionSpec, LayerSpec

from qpdk.cells.waveguides import straight
from qpdk.helper import show_components
from qpdk.tech import LAYER


[docs] @gf.cell def interdigital_capacitor( fingers: int = 4, finger_length: float = 20.0, finger_gap: float = 2.0, thickness: float = 5.0, etch_layer: LayerSpec | None = "M1_ETCH", etch_bbox_margin: float = 2.0, cross_section: CrossSectionSpec = "cpw", half: bool = False, ) -> Component: """Generate an interdigital capacitor component with ports on both ends. An interdigital capacitor consists of interleaved metal fingers that create a distributed capacitance. This component creates a planar capacitor with two sets of interleaved fingers extending from opposite ends. .. svgbob:: ┌─┐───────┐┌─┐ │ │───────┘│ │ │ │ ┌──────│ │ ┌│ │ └──────│ │┐ o1└│ │──────┐ │ │┘o2 │ │──────┘ │ │ │ │ ┌──────│ │ └─┘ └──────└─┘ See for example :cite:`leizhuAccurateCircuitModel2000`. Note: ``finger_length=0`` effectively provides a parallel plate capacitor. The capacitance scales approximately linearly with the number of fingers and finger length. Args: fingers: Total number of fingers of the capacitor (must be >= 1). finger_length: Length of each finger in μm. finger_gap: Gap between adjacent fingers in μm. thickness: Thickness of fingers and the base section in μm. etch_layer: Optional layer for etching around the capacitor. etch_bbox_margin: Margin around the capacitor for the etch layer in μm. cross_section: Cross-section for the short straight from the etch box capacitor. half: If True, creates a single-sided capacitor (half of the interdigital capacitor). Returns: Component: A gdsfactory component with the interdigital capacitor geometry and two ports ('o1' and 'o2') on opposing sides. """ c = Component() # Used temporarily layer = LAYER.M1_DRAW if fingers < 1: raise ValueError("Must have at least 1 finger") width = ( 2 * thickness + finger_length + finger_gap if not half else thickness + finger_length ) # total length height = fingers * thickness + (fingers - 1) * finger_gap # total height points_1 = [ (0, 0), (0, height), (thickness + finger_length, height), (thickness + finger_length, height - thickness), (thickness, height - thickness), *chain.from_iterable( ( (thickness, height - (2 * i) * (thickness + finger_gap)), ( thickness + finger_length, height - (2 * i) * (thickness + finger_gap), ), ( thickness + finger_length, height - (2 * i) * (thickness + finger_gap) - thickness, ), (thickness, height - (2 * i) * (thickness + finger_gap) - thickness), ) for i in range(ceil(fingers / 2)) ), (thickness, 0), (0, 0), ] c.add_polygon(points_1, layer=layer) if not half: points_2 = [ (width, 0), (width, height), (width - thickness, height), *chain.from_iterable( ( ( width - thickness, height - (1 + 2 * i) * thickness - (1 + 2 * i) * finger_gap, ), ( width - (thickness + finger_length), height - (1 + 2 * i) * thickness - (1 + 2 * i) * finger_gap, ), ( width - (thickness + finger_length), height - (2 + 2 * i) * thickness - (1 + 2 * i) * finger_gap, ), ( width - thickness, height - (2 + 2 * i) * thickness - (1 + 2 * i) * finger_gap, ), ) for i in range(floor(fingers / 2)) ), (width - thickness, 0), (width, 0), ] c.add_polygon(points_2, layer=layer) # Add etch layer bbox if specified if etch_layer is not None: etch_bbox = [ (-etch_bbox_margin, -etch_bbox_margin), (width + etch_bbox_margin, -etch_bbox_margin), (width + etch_bbox_margin, height + etch_bbox_margin), (-etch_bbox_margin, height + etch_bbox_margin), ] c.add_polygon(etch_bbox, layer=etch_layer) # Add small straights on the left and right sides of the capacitor straight_cross_section = gf.get_cross_section(cross_section) straight_out_of_etch = straight( length=etch_bbox_margin, cross_section=straight_cross_section ) straight_left = c.add_ref(straight_out_of_etch).move( (-etch_bbox_margin, height / 2) ) if not half: straight_right = c.add_ref(straight_out_of_etch).move((width, height / 2)) # Add WG to additive metal c_additive = gf.boolean( A=c, B=c, operation="or", layer=layer, layer1=layer, layer2=straight_cross_section.layer, ) # Take boolean negative c_negative = gf.boolean( A=c, B=c_additive, operation="A-B", layer=etch_layer, layer1=etch_layer, layer2=layer, ) # Combine results c = gf.Component() c.absorb(c << c_additive) c.absorb(c << c_negative) ports_config = [ ("o1", straight_left["o1"]), ("o2", straight_right["o2"]) if not half else None, ] for port_name, port_ref in filter(None, ports_config): c.add_port( name=port_name, width=port_ref.width, center=port_ref.center, orientation=port_ref.orientation, layer=LAYER.M1_DRAW, ) # Center at (0,0) c.move((-width / 2, -height / 2)) return c
[docs] @gf.cell def plate_capacitor( length: float = 26.0, width: float = 5.0, gap: float = 7.0, etch_layer: LayerSpec | None = "M1_ETCH", etch_bbox_margin: float = 2.0, cross_section: CrossSectionSpec = "cpw", ) -> Component: """Creates a plate capacitor. A capacitive coupler consists of two metal pads separated by a small gap, providing capacitive coupling between circuit elements like qubits and resonators. .. svgbob:: ______ ______ _________| | | |________ | | | | | o1 pad1 | ====gap==== | pad2 o2 | | | | | |_________ | | _________| |______| |______| Args: length: Length (vertical extent) of the capacitor pad in μm. width: Width (horizontal extent) of the capacitor pad in μm. gap: Gap between plates in μm. etch_layer: Optional layer for etching around the capacitor. etch_bbox_margin: Margin around the capacitor for the etch layer in μm. cross_section: Cross-section for the short straight from the etch box capacitor. Returns: A gdsfactory component with the plate capacitor geometry. """ if width <= 0: raise ValueError(f"width must be positive, got {width}") if length <= 0: raise ValueError(f"length must be positive, got {length}") c = Component() single_capacitor = plate_capacitor_single( length=length, width=width, etch_layer=etch_layer, etch_bbox_margin=etch_bbox_margin, cross_section=cross_section, ) c.add_ref(single_capacitor) pad2 = c.add_ref(single_capacitor) pad2.rotate(180) pad2.move((width + gap, 0)) c.center = (0, 0) # Ensure etch box between pads if etch_layer is not None: missing_width = gap - 2 * etch_bbox_margin if missing_width > 0: etch_bbox = [ (-missing_width / 2, -length / 2 - etch_bbox_margin), (missing_width / 2, -length / 2 - etch_bbox_margin), (missing_width / 2, length / 2 + etch_bbox_margin), (-missing_width / 2, length / 2 + etch_bbox_margin), ] c.add_polygon(etch_bbox, layer=etch_layer) return c
[docs] @gf.cell def plate_capacitor_single( length: float = 26.0, width: float = 5.0, etch_layer: LayerSpec | None = "M1_ETCH", etch_bbox_margin: float = 2.0, cross_section: CrossSectionSpec = "cpw", ) -> Component: """Creates a single plate capacitor for coupling. This is essentially half of a :func:`~plate_capacitor`. .. svgbob:: ______ _________| | | | | o1 pad1 | | | |_________ | |______| Args: length: Length (vertical extent) of the capacitor pad in μm. width: Width (horizontal extent) of the capacitor pad in μm. etch_layer: Optional layer for etching around the capacitor. etch_bbox_margin: Margin around the capacitor for the etch layer in μm. cross_section: Cross-section for the short straight from the etch box capacitor. Returns: A gdsfactory component with the plate capacitor geometry. """ if width <= 0: raise ValueError(f"width must be positive, got {width}") if length <= 0: raise ValueError(f"length must be positive, got {length}") c = Component() layer = LAYER.M1_DRAW points = [ (0, 0), (0, length), (width, length), (width, 0), ] c.add_polygon(points, layer=layer) # Add etch layer bbox if specified if etch_layer is not None: etch_bbox = [ (-etch_bbox_margin, -etch_bbox_margin), (width + etch_bbox_margin, -etch_bbox_margin), (width + etch_bbox_margin, length + etch_bbox_margin), (-etch_bbox_margin, length + etch_bbox_margin), ] c.add_polygon(etch_bbox, layer=etch_layer) # Add small straight on the left side of the capacitor straight_cross_section = gf.get_cross_section(cross_section) straight_out_of_etch = straight( length=etch_bbox_margin, cross_section=straight_cross_section ) straight_left = c.add_ref(straight_out_of_etch).move( (-etch_bbox_margin, length / 2) ) # Add WG to additive metal c_additive = gf.boolean( A=c, B=c, operation="or", layer=layer, layer1=layer, layer2=straight_cross_section.layer, ) # Take boolean negative c_negative = gf.boolean( A=c, B=c_additive, operation="A-B", layer=etch_layer, layer1=etch_layer, layer2=layer, ) # Combine results c = gf.Component() c.absorb(c << c_additive) c.absorb(c << c_negative) c.add_port( name="o1", width=straight_left["o1"].width, center=straight_left["o1"].center, orientation=straight_left["o1"].orientation, layer=LAYER.M1_DRAW, ) # Center at (0,0) c.move((-width / 2, -length / 2)) return c
if __name__ == "__main__": show_components( plate_capacitor_single, plate_capacitor, interdigital_capacitor, partial(interdigital_capacitor, half=True), )