Thermal

Thermal#

gdsfactory has an FEM femwell plugin that you can use for thermal simulations. You can simulate directly the component layout and include important effects such as metal dummy fill.

try:
  import google.colab
  is_running_on_colab = True
  !pip install gdsfactory gplugins[femwell] > /dev/null
  !apt install python3-gmsh gmsh > /dev/null
  
except ImportError:
  is_running_on_colab = False
import gdsfactory as gf
import meshio
from gdsfactory.generic_tech import get_generic_pdk
from gdsfactory.technology import LayerStack
from skfem.io import from_meshio

from gplugins.gmsh import create_physical_mesh, get_mesh

gf.config.rich_output()
PDK = get_generic_pdk()
PDK.activate()
gf.CONF.display_type = 'klayout' # for plotting in Colab notebook

LAYER_STACK = PDK.layer_stack

LAYER_STACK.layers["heater"].thickness = 0.13
LAYER_STACK.layers["heater"].zmin = 2.2

heater = gf.components.straight_heater_metal(length=50)
heater.plot()
2024-03-09 00:45:18.661 | INFO     | gdsfactory.technology.layer_views:to_lyp:1017 - LayerViews written to '/tmp/gdsfactory/straight_heater_metal_undercut_8589be07.lyp'.

../_images/a1d688b1fac33c71be28469d7a7c93c451aa5f394bbf292d07ad488380d5a897.png

Example based on femwell

from collections import OrderedDict

import matplotlib.pyplot as plt
import numpy as np
from shapely.geometry import LineString, Polygon
from skfem import Basis, ElementTriP0
from skfem.io import from_meshio
from tqdm import tqdm

from femwell.maxwell.waveguide import compute_modes
from femwell.mesh import mesh_from_OrderedDict
from femwell.thermal import solve_thermal
w_sim = 8 * 2
h_clad = 2.8
h_box = 2
w_core = 0.5
h_core = 0.22
h_heater = 0.14
w_heater = 2
offset_heater = 2 + (h_core + h_heater) / 2
h_silicon = 0.5

polygons = OrderedDict(
    bottom=LineString(
        [
            (-w_sim / 2, -h_core / 2 - h_box - h_silicon),
            (w_sim / 2, -h_core / 2 - h_box - h_silicon),
        ]
    ),
    core=Polygon(
        [
            (-w_core / 2, -h_core / 2),
            (-w_core / 2, h_core / 2),
            (w_core / 2, h_core / 2),
            (w_core / 2, -h_core / 2),
        ]
    ),
    heater=Polygon(
        [
            (-w_heater / 2, -h_heater / 2 + offset_heater),
            (-w_heater / 2, h_heater / 2 + offset_heater),
            (w_heater / 2, h_heater / 2 + offset_heater),
            (w_heater / 2, -h_heater / 2 + offset_heater),
        ]
    ),
    clad=Polygon(
        [
            (-w_sim / 2, -h_core / 2),
            (-w_sim / 2, -h_core / 2 + h_clad),
            (w_sim / 2, -h_core / 2 + h_clad),
            (w_sim / 2, -h_core / 2),
        ]
    ),
    box=Polygon(
        [
            (-w_sim / 2, -h_core / 2),
            (-w_sim / 2, -h_core / 2 - h_box),
            (w_sim / 2, -h_core / 2 - h_box),
            (w_sim / 2, -h_core / 2),
        ]
    ),
    wafer=Polygon(
        [
            (-w_sim / 2, -h_core / 2 - h_box - h_silicon),
            (-w_sim / 2, -h_core / 2 - h_box),
            (w_sim / 2, -h_core / 2 - h_box),
            (w_sim / 2, -h_core / 2 - h_box - h_silicon),
        ]
    ),
)

resolutions = dict(
    core={"resolution": 0.04, "distance": 1},
    clad={"resolution": 0.6, "distance": 1},
    box={"resolution": 0.6, "distance": 1},
    heater={"resolution": 0.1, "distance": 1},
)

mesh = from_meshio(
    mesh_from_OrderedDict(polygons, resolutions, default_resolution_max=0.6)
)
mesh.draw().show()

../_images/8c74d74a56f4685241604f1fc5bb8960ddf6cc6a21fd0ae19f1ceda9d94dd048.png

And then we solve it!

currents = np.linspace(0.0, 7.4e-3, 10)
current_densities = currents / polygons["heater"].area
neffs = []

for current_density in tqdm(current_densities):
    basis0 = Basis(mesh, ElementTriP0(), intorder=4)
    thermal_conductivity_p0 = basis0.zeros()
    for domain, value in {
        "core": 90,
        "box": 1.38,
        "clad": 1.38,
        "heater": 28,
        "wafer": 148,
    }.items():
        thermal_conductivity_p0[basis0.get_dofs(elements=domain)] = value
    thermal_conductivity_p0 *= 1e-12  # 1e-12 -> conversion from 1/m^2 -> 1/um^2

    basis, temperature = solve_thermal(
        basis0,
        thermal_conductivity_p0,
        specific_conductivity={"heater": 2.3e6},
        current_densities={"heater": current_density},
        fixed_boundaries={"bottom": 0},
    )

    if current_density == current_densities[-1]:
        basis.plot(temperature, shading="gouraud", colorbar=True)
        plt.show()

    temperature0 = basis0.project(basis.interpolate(temperature))
    epsilon = basis0.zeros() + (1.444 + 1.00e-5 * temperature0) ** 2
    epsilon[basis0.get_dofs(elements="core")] = (
        3.4777 + 1.86e-4 * temperature0[basis0.get_dofs(elements="core")]
    ) ** 2
    # basis0.plot(epsilon, colorbar=True).show()

    modes = compute_modes(basis0, epsilon, wavelength=1.55, num_modes=1, solver="scipy")

    if current_density == current_densities[-1]:
        modes[0].show(modes[0].E.real)

    neffs.append(np.real(modes[0].n_eff))

length = 320 # um
print(f"Phase shift: {2 * np.pi / 1.55 * (neffs[-1] - neffs[0]) * length}")
plt.xlabel("Current / mA")
plt.ylabel("Effective refractive index $n_{eff}$")
plt.plot(currents * 1e3, neffs)
plt.show()

../_images/155c2d0544efc8fe48c66165f2de29b1c97ee1b7c71ab17d280512b48ff10d7b.png

../_images/f707370ea17a28ac72aff136378722935399c0ed28108fb945db5cee6a65facb.png
Phase shift: 3.786321638790853

../_images/891efffe2f60c6ce6fe314c4df9e4a9e279df3eb1c5d2ce69c0a535df99bc5e6.png