gdsfactory.cross_section.Transition#
- class gdsfactory.cross_section.Transition(*, sections: tuple[Section, ...] = None, components_along_path: tuple[ComponentAlongPath, ...] = None, radius: float | None = None, radius_min: float | None = None, bbox_layers: list[tuple[int, int] | str] | tuple[tuple[int, int] | str, ...] | None = None, bbox_offsets: tuple[float, ...] | None = None, cross_section1: CrossSection | str | dict[str, Any] | Callable[[...], CrossSection], cross_section2: CrossSection | str | dict[str, Any] | Callable[[...], CrossSection], width_type: Literal['sine', 'linear', 'parabolic'] | Callable = 'sine')[source]#
Waveguide information to extrude a path between two CrossSection.
cladding_layers follow path shape
- Parameters:
cross_section1 – input cross_section.
cross_section2 – output cross_section.
width_type – sine or linear. Sets the type of width transition used if widths are different between the two input CrossSections.
- __init__(**data: Any) None#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
Methods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
add_bbox(component[, top, bottom, right, left])Add bounding box layers to a component.
add_pins(component, *args, **kwargs)Add pins to a target component according to
CrossSection.append_sections(sections)construct([_fields_set])copy([width, layer, width_function, ...])Returns copy of the cross_section with new parameters.
dict(*[, include, exclude, by_alias, ...])from_orm(obj)get_xmin_xmax()Returns the min and max extent of the cross_section across all sections.
json(*[, include, exclude, by_alias, ...])mirror()Returns a mirrored copy of the cross_section.
model_construct([_fields_set])Creates a new instance of the Model class with validated data.
model_copy(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#model_copy
model_dump(*[, mode, include, exclude, ...])Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#modelmodel_dump
model_dump_json(*[, indent, include, ...])Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#modelmodel_dump_json
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(_BaseModel__context)Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.7/concepts/json/#json-parsing
model_validate_strings(obj, *[, strict, context])Validate the given object contains string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])serialize_width(width_type)update_forward_refs(**localns)validate(value)validate_radius(radius[, error_type])Attributes
layermodel_computed_fieldsA dictionary of computed field names and their corresponding ComputedFieldInfo objects.
model_configConfiguration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extraGet extra fields set during validation.
model_fieldsMetadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
model_fields_setReturns the set of fields that have been explicitly set on this model instance.
namewidthcross_section1cross_section2width_typesectionscomponents_along_pathradiusradius_minbbox_layersbbox_offsets