Source code for gdsfactory.pack

"""pack a list of components into as few components as possible.

Adapted from PHIDL https://github.com/amccaugh/phidl/ by Adam McCaughan
"""

from __future__ import annotations

import warnings
from collections import Counter
from typing import Any

import numpy as np
from pydantic import validate_call

import gdsfactory as gf
from gdsfactory.component import Component, valid_anchors
from gdsfactory.name import get_name_short
from gdsfactory.snap import snap_to_grid
from gdsfactory.typings import Anchor, ComponentSpec, Float2, Number

name_counters = Counter()


def _pack_single_bin(
    rect_dict: dict[int, tuple[Number, Number]],
    aspect_ratio: tuple[Number, Number],
    max_size: tuple[float, float],
    sort_by_area: bool,
    density: float,
) -> tuple[dict[int, tuple[Number, Number, Number, Number]], dict[Any, Any]]:
    """Packs a dict of rectangles {id:(w,h)} and tries to.

    Pack it into a bin as small as possible with aspect ratio `aspect_ratio`
    Will iteratively grow the bin size until everything fits or the bin size
    reaches `max_size`.

    Args:
        rect_dict: dict of rectangles {id: (w, h)} to pack.
        aspect_ratio: x, y.
        max_size: tuple of max X, Y size.
        sort_by_area: sorts components by area.
        density: of packing, closer to 1 packs tighter (more compute heavy).

    Returns:
        packed rectangles dict {id:(x,y,w,h)}. dict of remaining unpacked rectangles.

    """
    import rectpack

    # Compute total area and use it for an initial estimate of the bin size
    total_area = sum(r[0] * r[1] for r in rect_dict.values())
    aspect_ratio = np.asarray(aspect_ratio) / np.linalg.norm(aspect_ratio)  # Normalize

    # Setup variables
    box_size = np.asarray(aspect_ratio * np.sqrt(total_area), dtype=np.float64)
    box_size = np.clip(box_size, None, max_size)
    rp_sort = rectpack.SORT_AREA if sort_by_area else rectpack.SORT_NONE
    # Repeatedly run the rectangle-packing algorithm with increasingly larger
    # areas until everything fits or we've reached the maximum size
    while True:
        # Create the pack object
        rect_packer = rectpack.newPacker(
            mode=rectpack.PackingMode.Offline,
            pack_algo=rectpack.MaxRectsBlsf,
            sort_algo=rp_sort,
            bin_algo=rectpack.PackingBin.BBF,
            rotation=False,
        )

        # Add each rectangle to the pack, create a single bin, and pack
        for rid, r in rect_dict.items():
            rect_packer.add_rect(width=r[0], height=r[1], rid=rid)
        rect_packer.add_bin(width=box_size[0], height=box_size[1])
        rect_packer.pack()

        # Adjust the box size for next time
        box_size *= density  # Increase area to try to fit
        box_size = np.clip(box_size, None, max_size)

        # Quit the loop if we've packed all the rectangles or reached the max size
        if len(rect_packer.rect_list()) == len(rect_dict):
            break
        if all(box_size >= max_size):
            break

    # Separate packed from unpacked rectangles, make dicts of form {id:(x,y,w,h)}
    packed_rect_dict = {r[-1]: r[:-1] for r in rect_packer[0].rect_list()}
    unpacked_rect_dict = {
        k: v for k, v in rect_dict.items() if k not in packed_rect_dict
    }

    return packed_rect_dict, unpacked_rect_dict


[docs] @validate_call def pack( component_list: list[ComponentSpec], spacing: float = 10.0, aspect_ratio: Float2 = (1.0, 1.0), max_size: tuple[float | None, float | None] = (None, None), sort_by_area: bool = True, density: float = 1.1, precision: float = 1e-2, text: ComponentSpec | None = None, text_prefix: str = "", text_mirror: bool = False, text_rotation: int = 0, text_offsets: tuple[Float2, ...] = ((0, 0),), text_anchors: tuple[Anchor, ...] = ("cc",), name_prefix: str | None = None, rotation: int = 0, h_mirror: bool = False, v_mirror: bool = False, add_ports_prefix: bool = True, name_ports_with_component_name: bool = True, ) -> list[Component]: """Pack a list of components into as few Components as possible. Args: component_list: list or tuple. spacing: Minimum distance between adjacent shapes. aspect_ratio: (width, height) ratio of the rectangular bin. max_size: Limits the size into which the shapes will be packed. sort_by_area: Pre-sorts the shapes by area. density: Values closer to 1 pack tighter but require more computation. precision: Desired precision for rounding vertex coordinates. text: Optional function to add text labels. text_prefix: for labels. For example. 'A' will produce 'A1', 'A2', ... text_mirror: if True mirrors text. text_rotation: Optional text rotation. text_offsets: relative to component size info anchor. Defaults to center. text_anchors: relative to component (ce cw nc ne nw sc se sw center cc). name_prefix: for each packed component (avoids the Unnamed cells warning). \ Note that the suffix contains a uuid so the name will not be deterministic. rotation: optional component rotation in degrees. h_mirror: horizontal mirror in y axis (x, 1) (1, 0). This is the most common. v_mirror: vertical mirror using x axis (1, y) (0, y). add_ports_prefix: adds prefix to port names. False adds suffix. name_ports_with_component_name: if True uses component.name as unique id. False uses index. .. plot:: :include-source: import gdsfactory as gf from functools import partial components = [gf.components.triangle(x=i) for i in range(1, 10)] c = gf.pack( components, spacing=20.0, max_size=(100, 100), text=partial(gf.components.text, justify="center"), text_prefix="R", name_prefix="demo", text_anchors=["nc"], text_offsets=[(-10, 0)], v_mirror=True, ) c[0].plot() """ if density < 1.01: raise ValueError( "pack() `density` argument is too small. " "The density argument must be >= 1.01" ) # Sanitize max_size variable max_size = [np.inf if v is None else v for v in max_size] max_size = np.asarray(max_size, dtype=np.float64) # In case it's integers max_size = max_size / precision component_list = [gf.get_component(component) for component in component_list] # Convert Components to rectangles rect_dict = {} for n, D in enumerate(component_list): if not isinstance(D, Component): raise ValueError(f"pack() failed because {D} is not a Component") w, h = (D.size + spacing) / precision w, h = int(w), int(h) if (w > max_size[0]) or (h > max_size[1]): raise ValueError( f"pack() failed because Component {D.name!r} has x or y " "dimension larger than `max_size` and cannot be packed.\n" f"size = {w*precision, h*precision}, max_size = {max_size*precision}" ) rect_dict[n] = (w, h) packed_list = [] while rect_dict: (packed_rect_dict, rect_dict) = _pack_single_bin( rect_dict, aspect_ratio=aspect_ratio, max_size=max_size, sort_by_area=sort_by_area, density=density, ) packed_list.append(packed_rect_dict) components_packed_list = [] name_counter = Counter() index = 0 for i, rect_dict in enumerate(packed_list): name = get_name_short(f"{name_prefix or 'pack'}_{i}") packed = Component(name) for n, rect in rect_dict.items(): x, y, w, h = rect xcenter = x + w / 2 + spacing / 2 ycenter = y + h / 2 + spacing / 2 component = component_list[n] d = component.ref(rotation=rotation, h_mirror=h_mirror, v_mirror=v_mirror) packed.add(d) d.center = snap_to_grid((xcenter * precision, ycenter * precision)) component_id = component.name if name_ports_with_component_name else index name_counter[component_id] += 1 if name_counter[component_id] > 1: component_id = f"{component_id}${name_counter[component_id]}" info = component.info info["parent"] = component.name if add_ports_prefix: packed.add_ports(d.ports, prefix=f"{component_id}-", info=info) else: packed.add_ports(d.ports, suffix=f"-{component_id}", info=info) index += 1 if text: for text_offset, text_anchor in zip(text_offsets, text_anchors): if text_anchor not in valid_anchors: raise ValueError( f"Invalid anchor {text_anchor} not in {valid_anchors}" ) label = packed << text(f"{text_prefix}{index}") if text_mirror: label.mirror() if text_rotation: label.rotate(text_rotation) label.move( np.array(text_offset) + getattr(d.size_info, text_anchor) ) components_packed_list.append(packed) if len(components_packed_list) > 1: groups = len(components_packed_list) warnings.warn(f"unable to pack in one component, creating {groups} components") return components_packed_list
def test_pack() -> None: """Test packing function.""" component_list = [ gf.components.ellipse(radii=tuple(np.random.rand(2) * n + 2)) for n in range(2) ] component_list += [ gf.components.rectangle(size=tuple(np.random.rand(2) * n + 2)) for n in range(2) ] components_packed_list = pack( component_list, # Must be a list or tuple of Components spacing=1.25, # Minimum distance between adjacent shapes aspect_ratio=(2, 1), # (width, height) ratio of the rectangular bin max_size=(None, None), # Limits the size into which the shapes will be packed density=1.05, # Values closer to 1 pack tighter but require more computation sort_by_area=True, # Pre-sorts the shapes by area ) c = components_packed_list[0] # Only one bin was created, so we plot that assert len(c.get_dependencies()) == 4 assert c def test_pack_with_settings() -> None: """Test packing function with custom settings.""" component_list = [ gf.components.rectangle(size=(i, i), port_type=None) for i in range(1, 10) ] component_list += [ gf.components.rectangle(size=(i, i), port_type=None) for i in range(1, 10) ] components_packed_list = pack( component_list, # Must be a list or tuple of Components spacing=1.25, # Minimum distance between adjacent shapes aspect_ratio=(2, 1), # (width, height) ratio of the rectangular bin # max_size=(None, None), # Limits the size into which the shapes will be packed max_size=(100, 100), # Limits the size into which the shapes will be packed density=1.05, # Values closer to 1 pack tighter but require more computation sort_by_area=True, # Pre-sorts the shapes by area precision=1e-3, ) assert components_packed_list[0] if __name__ == "__main__": # # test_pack() component_list = [ gf.components.ellipse(radii=tuple(np.random.rand(2) * n + 2)) for n in range(2) ] component_list += [ gf.components.rectangle(size=tuple(np.random.rand(2) * n + 2), name=f"r{n}") for n in range(2) ] # component_list = [gf.c.straight, gf.c.straight] # components_packed_list = pack( # component_list, # Must be a list or tuple of Components # spacing=1.25, # Minimum distance between adjacent shapes # aspect_ratio=(2, 1), # (width, height) ratio of the rectangular bin # max_size=(None, None), # Limits the size into which the shapes will be packed # density=1.05, # Values closer to 1 pack tighter but require more computation # sort_by_area=True, # Pre-sorts the shapes by area # ) # c = components_packed_list[0] # Only one bin was created, so we plot that from functools import partial p = pack( [gf.components.straight(length=i) for i in [1, 1]], spacing=20.0, max_size=(100, 100), text=partial(gf.components.text, justify="center"), text_prefix="R", name_prefix="demo", text_anchors=["nc"], text_offsets=[(-10, 0)], text_mirror=True, v_mirror=True, ) # c = p[0] c = pack(p)[0] c.show(show_ports=True)