Routing to IO#

Routing electrical#

For routing low speed DC electrical ports you can use sharp corners instead of smooth bends.

You can also define port.orientation = None to ignore the port orientation for low speed DC ports.

For single route between ports you can use route_single_electrical

route_single_electrical#

route_single_electrical has bend = wire_corner with a 90deg bend corner.

import gdsfactory as gf
from gdsfactory.samples.big_device import big_device

gf.config.rich_output()

c = gf.Component()
pt = c << gf.components.pad_array(port_orientation=270, columns=3)
pb = c << gf.components.pad_array(port_orientation=90, columns=3)
pt.move((70, 200))
c.plot()

../_images/2845c9f947362ec6597a841420027454cfbfdd579e08ecabe153652c4e80de9e.png
c = gf.Component()
pt = c << gf.components.pad_array(port_orientation=270, columns=3)
pb = c << gf.components.pad_array(port_orientation=90, columns=3)
pt.move((70, 200))
route = gf.routing.route_single_electrical(
    c,
    pt.ports["e11"],
    pb.ports["e11"],
    start_straight_length=20,
    cross_section="metal_routing",
)
c.plot()

../_images/84dd38a64a6153c83ff397591cf1090f6273b1464bdaa25f518a9617b16a0c56.png

There is also bend = wire_corner45 for 45deg bend corner with parametrizable “radius”:

c = gf.Component()
pt = c << gf.components.pad_array(port_orientation=270, columns=1, centered_ports=False)
pb = c << gf.components.pad_array(port_orientation=90, columns=1, centered_ports=False)
pt.move((300, 300))
route = gf.routing.route_single(
    c,
    pt.ports["e11"],
    pb.ports["e11"],
    bend="wire_corner45",
    port_type="electrical",
    cross_section="metal_routing",
    allow_width_mismatch=True,
)
c.plot()

../_images/6328b01652fdaca6e164f6e8ae2f7ca06d000800b6adece05521e3b0218d4f0d.png
c = gf.Component()
pt = c << gf.components.pad_array(port_orientation=270, columns=1, centered_ports=False)
pb = c << gf.components.pad_array(port_orientation=90, columns=1, centered_ports=False)
pt.move((400, 400))
route = gf.routing.route_single(
    c,
    pt.ports["e11"],
    pb.ports["e11"],
    bend="wire_corner45",
    radius=100,
    cross_section="metal_routing",
    port_type="electrical",
    allow_width_mismatch=True,
)
c.plot()

../_images/3e98b0380c59628c64620a1aaee9e0a5e669aeb768b9d076a28f137029d38a00.png

route_quad#

c = gf.Component()
pt = c << gf.components.pad_array(port_orientation=270, columns=3, centered_ports=False)
pb = c << gf.components.pad_array(port_orientation=90, columns=3, centered_ports=False)
pt.move((100, 200))
gf.routing.route_quad(c, pt.ports["e11"], pb.ports["e11"], layer=(49, 0))
c.plot()

../_images/b34acbfa58b72f921c1aaed185322596806490aa076e480a682802c81d3c0207.png

route_single#

c = gf.Component()
pt = c << gf.components.pad_array(port_orientation=270, columns=3, centered_ports=True)
pb = c << gf.components.pad_array(port_orientation=90, columns=3, centered_ports=True)
pt.move((100, 200))
route = gf.routing.route_single(
    c,
    pb.ports["e11"],
    pt.ports["e11"],
    steps=[
        {"y": 200},
    ],
    cross_section="metal_routing",
    bend=gf.components.wire_corner,
    port_type="electrical",
    allow_width_mismatch=True,
    auto_taper=False,
)
c.plot()

../_images/cde008da0512db5c07a0e3055db41cfc4b2aec1a0fd4f6de5e473775f6be74cd.png

route_bundle_electrical#

For routing groups of ports you can use route_bundle that returns a bundle of routes using a bundle router (also known as bus or river router)

c = gf.Component()
pt = c << gf.components.pad_array(port_orientation=270, columns=3, centered_ports=False)
pb = c << gf.components.pad_array(port_orientation=90, columns=3, centered_ports=False)
pt.move((100, 300))

routes = gf.routing.route_bundle_electrical(
    c,
    pb.ports,
    pt.ports,
    start_straight_length=30,
    separation=30,
    cross_section="metal_routing",
)
c.plot()

../_images/7f4d8e4c0a0205695cb9ec3f37d0b625b5ebd3a75091e467b81073089dcc96a6.png

Routing to pads#

You can also route to electrical pads.

c = gf.components.straight_heater_metal(length=100.0)
cc = gf.routing.add_pads_bot(component=c, port_names=("l_e4", "r_e4"), fanout_length=80)
cc.plot()

../_images/941bad97ba75d3e6bed991a3d9c286ff313f4eb6ae9efab0488d29d137a055d9.png
c = gf.components.straight_heater_metal(length=100.0)
cc = gf.routing.add_pads_bot(component=c, port_names=("l_e4", "r_e4"), fanout_length=80)
cc.plot()

../_images/941bad97ba75d3e6bed991a3d9c286ff313f4eb6ae9efab0488d29d137a055d9.png
c = gf.components.straight_heater_metal(length=110)
cc = gf.routing.add_pads_top(component=c, port_names=("l_e4", "r_e4"), fanout_length=80)
cc.plot()

../_images/5d7b6423d31dd74e78a96718e3e96b8eefbc9c4ec4e26e679efa7c99dc5115a5.png
c = gf.c.nxn(
    xsize=600,
    ysize=200,
    north=0,
    south=3,
    wg_width=10,
    layer="M3",
    port_type="electrical",
)
cc = gf.routing.add_pads_top(component=c, fanout_length=100)
cc.plot()

../_images/84d8de2ad0f3344f35bce80ffc64f15d2a8bd46eb460b4360c12413783c9068f.png
n = west = north = south = east = 10
spacing = 20
c = gf.components.nxn(
    xsize=n * spacing,
    ysize=n * spacing,
    west=west,
    east=east,
    north=north,
    south=south,
    port_type="electrical",
    wg_width=10,
    layer="M3",
)
c.plot()

../_images/7360b8c5037fc54cb7409f550cb8af49282a7733870e874575c7fa9759bcd1a3.png
cc = gf.routing.add_pads_top(component=c, fanout_length=-280)
cc.plot()

../_images/4da19b671be3c6a60c02c9af9992297d827d9e6f0b05a17763b10ffc3930c496.png

Routing to optical terminations#

Route to Fiber Array#

You can route to a fiber array.

component = big_device(nports=10)
c = gf.routing.add_fiber_array(component=component, radius=10.0, fanout_length=60.0)
c.plot()

../_images/be97cb5db9dc0e2a74cd6f0abbf6d893e20e285546171b9c5683df22e985ea8d.png

You can also mix and match TE and TM grating couplers. Notice that the TM polarization grating coupler is bigger.

import gdsfactory as gf

c = gf.components.mzi_phase_shifter()
gcte = gf.components.grating_coupler_te

cc = gf.routing.add_fiber_array(
    component=c,
    grating_coupler=gf.components.grating_coupler_te,
    radius=20,
)
cc.plot()

../_images/79e030333b612b03b1f58ff99ec891ac76ed31faa3b0639c48aa52383e4c1eaf.png

Route to edge couplers#

You can also route Edge couplers to a fiber array or to both sides of the chip.

For routing to both sides you can follow different strategies:

  1. Place the edge couplers and route your components to the edge couplers.

  2. Extend your component ports to each side.

  3. Anything you imagine …

from functools import partial

import gdsfactory as gf
import gdsfactory.components as pc
from gdsfactory.generic_tech import LAYER


@gf.cell
def sample_reticle(
    size=(1500, 2000),
    ec="edge_coupler_silicon",
    bend_s=partial(gf.c.bend_s, size=(100, 100)),
) -> gf.Component:
    """Returns MZI with edge couplers.

    Args:
        size: size of the reticle.
        ec: edge coupler component name.
        bend_s: bend_s component.
    """
    mzis = [pc.mzi(length_x=lengths) for lengths in [100, 200, 300]]
    copies = 3  # number of copies of each component
    components = mzis * copies

    xsizes = [component.xsize for component in components]
    xsize_max = max(xsizes)
    ec = gf.get_component(ec)
    taper = pc.taper(width2=0.5)
    components_ec = []

    if xsize_max + 2 * taper.xsize + 2 * ec.xsize > size[0]:
        raise ValueError(
            f"Component xsize_max={xsize_max} is larger than reticle size[0]={size[0]}"
        )

    if bend_s:
        bend_s = gf.get_component(bend_s)

    for component in components:
        if bend_s:
            component = gf.components.extend_ports(
                component, extension=bend_s, port1="o1", port2="o2"
            )
            extension_length = (
                size[0]
                - 2 * taper.xsize
                - 2 * ec.xsize
                - component.xsize
                - 2 * bend_s.xsize
            ) / 2
        else:
            extension_length = (
                size[0] - 2 * taper.xsize - 2 * ec.xsize - component.xsize
            ) / 2

        component_extended = gf.components.extend_ports(
            component,
            extension=pc.straight(extension_length),
            port2="o2",
            port1="o1",
        )

        component_tapered = gf.components.extend_ports(
            component_extended, extension=taper, port2="o2", port1="o1"
        )
        component_ec = gf.components.extend_ports(
            component_tapered, extension=ec, port1="o1", port2="o2"
        )
        components_ec.append(component_ec)

    c = gf.Component()
    fp = c << pc.rectangle(size=size, layer=LAYER.FLOORPLAN)

    text_offset_y = 10
    text_offset_x = 100

    grid = c << gf.grid_with_text(
        components_ec,
        shape=(len(components), 1),
        text=partial(gf.c.text_rectangular, layer=LAYER.M3),
        text_offsets=(
            (-size[0] / 2 + text_offset_x, text_offset_y),
            (+size[0] / 2 - text_offset_x - 160, text_offset_y),
        ),
    )
    fp.x = grid.x
    return c


c = sample_reticle(bend_s=None)
c.plot()

../_images/601fe1726aea4836add8177f89c293af6d47fa2c7e0c575b657b794fcc28a1f3.png

To avoid straight light you can also include an Sbend.

c = sample_reticle()
c.plot()

../_images/337ddccdf53c923168e4d3d301c476c03cf3324610f31ca937cca514a7ab3f03.png