Generic PDK#

gdsfactory includes a generic Process Design Kit PDK, which is a library of components associated to a generic foundry process gdsfactory.generic_tech. See components available in the generic component library that you can customize or adapt to create your own.

The generic process including layer numbers is based on the book “Silicon Photonics Design: From Devices to Systems Lukas Chrostowski, Michael Hochberg”. You can learn more about process design kits (PDKs) in this tutorial

LayerMap#

A layer map maps layer names to a integer numbers pair (GDSlayer, GDSpurpose)

Each foundry uses different GDS layer numbers for different process steps.

GDS (layer, purpose)

layer_name

Description

1 , 0

WG

220 nm Silicon core

2 , 0

SLAB150

150nm Silicon slab (70nm shallow Etch for grating couplers)

3 , 0

SLAB90

90nm Silicon slab (for modulators)

4, 0

DEEPTRENCH

Deep trench

47, 0

MH

heater

41, 0

M1

metal 1

45, 0

M2

metal 2

40, 0

VIAC

VIAC to contact Ge, NPP or PPP

44, 0

VIA1

VIA1

46, 0

PADOPEN

Bond pad opening

51, 0

UNDERCUT

Undercut

66, 0

TEXT

Text markup

64, 0

FLOORPLAN

Mask floorplan

Hide code cell source
from IPython.display import Code

import gdsfactory as gf
from gdsfactory.config import PATH
from gdsfactory.generic_tech import LAYER_STACK, get_generic_pdk
from gdsfactory.generic_tech.get_klayout_pyxs import get_klayout_pyxs
from gdsfactory.technology import LayerLevel, LayerMap, LayerStack, LayerViews
from gdsfactory.typings import Layer
class LAYER(LayerMap):
    """Generic layermap based on book.

    Lukas Chrostowski, Michael Hochberg, "Silicon Photonics Design",
    Cambridge University Press 2015, page 353
    You will need to create a new LayerMap with your specific foundry layers.
    """

    WAFER: Layer = (999, 0)

    WG: Layer = (1, 0)
    WGCLAD: Layer = (111, 0)
    SLAB150: Layer = (2, 0)
    SLAB90: Layer = (3, 0)
    DEEPTRENCH: Layer = (4, 0)
    GE: Layer = (5, 0)
    UNDERCUT: Layer = (6, 0)
    WGN: Layer = (34, 0)
    WGN_CLAD: Layer = (36, 0)

    N: Layer = (20, 0)
    NP: Layer = (22, 0)
    NPP: Layer = (24, 0)
    P: Layer = (21, 0)
    PP: Layer = (23, 0)
    PPP: Layer = (25, 0)
    GEN: Layer = (26, 0)
    GEP: Layer = (27, 0)

    HEATER: Layer = (47, 0)
    M1: Layer = (41, 0)
    M2: Layer = (45, 0)
    M3: Layer = (49, 0)
    VIAC: Layer = (40, 0)
    VIA1: Layer = (44, 0)
    VIA2: Layer = (43, 0)
    PADOPEN: Layer = (46, 0)

    DICING: Layer = (100, 0)
    NO_TILE_SI: Layer = (71, 0)
    PADDING: Layer = (67, 0)
    DEVREC: Layer = (68, 0)
    FLOORPLAN: Layer = (64, 0)
    TEXT: Layer = (66, 0)
    PORT: Layer = (1, 10)
    PORTE: Layer = (1, 11)
    PORTH: Layer = (70, 0)
    SHOW_PORTS: Layer = (1, 12)
    LABEL_SETTINGS: Layer = (202, 0)
    DRC_MARKER: Layer = (205, 0)
    LABEL_INSTANCE: Layer = (206, 0)

    SOURCE: Layer = (110, 0)
    MONITOR: Layer = (101, 0)


LAYER.WG
<LAYER.WG: 1>
layer_wg = (1, 0)
print(layer_wg)
(1, 0)

Extract layers#

You can also extract layers using the extract function. This function returns a new flattened Component that contains the extracted layers. A flat Component does not have references, and all the polygons are absorbed into the top cell.

PDK = get_generic_pdk()
PDK.activate()

LAYER_VIEWS = PDK.layer_views
c = LAYER_VIEWS.preview_layerset()
c.plot()
../_images/36d23fc7fc6b5b5453c49856a3301239f14a5d8005192c4c9e9972f1e910ec07.png
extract = c.extract(layers=((41, 0), (40, 0)))
extract.plot()
../_images/53226945b60a577d35b1f95cc993d936e90aa48a9086734d04537bd6d3943f63.png

Remove layers#

You can remove layers using the remove_layers() function.

removed = extract.remove_layers(layers=((40, 0),))
removed.plot()
../_images/a6751617c80d878ecb7cccb8f506cd62b2a2e8f6947772717ca0f77b0231271e.png

Remap layers#

You can remap (change the polygons from one layer to another layer) using the remap_layer, which will return a new Component

c = gf.components.rectangle(layer=(2, 0))
c.plot()
../_images/64d0b5efcbfb89c37bf673c4d7fd7c424da129bb8434a2a00404267ad6f6a35e.png
remap = c.remap_layers({(2, 0): (34, 0)})
remap.plot()
../_images/1de45fbeeac82cde062a741ede59df3253d5cf3e8f6a6e0d61a75700575dee85.png

LayerViews#

Klayout shows each GDS layer with a color, style and transparency

You can define your layerViews in a klayout Layer Properties file layers.lyp or in YAML format

We recommend using YAML and then generate the lyp in klayout, as YAML is easier to modify than XML.

Code(filename=PATH.klayout_yaml)
LayerViews:
  Waveguide:
    layer: [1, 0]
    hatch_pattern: dotted
    width: 1
    color: "#ff9d9d"
  WGCLAD:
    layer: [111, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    visible: false
    width: 1
    color: "silver"
  SLAB150:
    layer: [2, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    transparent: true
    width: 1
    color: "cyan"
  SHALLOW_ETCH:
    layer: [2, 6]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    color: "blue"
  SLAB90:
    layer: [3, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    transparent: true
    width: 1
    color: "#805000"
  DEEP_ETCH:
    layer: [3, 6]
    layer_in_name: true
    hatch_pattern: left-hatched
    color: "#cc0000"
  SLAB150CLAD:
    layer: [2, 9]
    layer_in_name: true
    frame_color: "#9999cc"
    fill_color: "#80a8ff"
    hatch_pattern: coarsely dotted
    visible: false
    width: 1
  SLAB90CLAD:
    layer: [3, 1]
    layer_in_name: true
    frame_color: "#9999cc"
    fill_color: "#80a8ff"
    hatch_pattern: hollow
    visible: false
    width: 1
  Doping:
    group_members:
      N:
        layer: [20, 0]
        layer_in_name: true
        hatch_pattern: lightly left-hatched
        width: 1
        color: "red"
      NP:
        layer: [22, 0]
        layer_in_name: true
        hatch_pattern: lightly left-hatched
        width: 1
        color: "red"
      NPP:
        layer: [24, 0]
        layer_in_name: true
        hatch_pattern: coarsely dotted
        width: 1
        color: "red"
      P_210:
        layer: [21, 0]
        hatch_pattern: lightly left-hatched
        transparent: true
        width: 1
        color: "blue"
      PP:
        layer: [23, 0]
        layer_in_name: true
        hatch_pattern: lightly left-hatched
        width: 1
        color: "blue"
      PPP:
        layer: [25, 0]
        layer_in_name: true
        hatch_pattern: strongly left-hatched dense
        width: 1
        color: "blue"
      PDPP:
        layer: [27, 0]
        layer_in_name: true
        hatch_pattern: lightly cross-hatched
        width: 1
        color: "#ccb27f"
      GENPP:
        layer: [26, 0]
        layer_in_name: true
        hatch_pattern: plus
        width: 1
        color: "#cc00cc"
      GEPPP:
        layer: [29, 0]
        layer_in_name: true
        hatch_pattern: plus
        width: 1
        color: "#cc00cc"
  WGN_Nitride:
    layer: [34, 0]
    layer_in_name: true
    hatch_pattern: left-hatched
    transparent: true
    width: 1
    color: "#ff8000"
  WGclad_material:
    layer: [36, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    visible: false
    width: 1
    color: "silver"
  GE:
    layer: [5, 0]
    layer_in_name: true
    hatch_pattern: dotted
    width: 1
    color: "magenta"
  SILICIDE:
    layer: [39, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    width: 1
    color: "#cc4c00"
  MH:
    layer: [47, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    transparent: true
    width: 1
    color: "#ff8000"
  M1:
    layer: [41, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    width: 1
    color: "#01ff6b"
    brightness: -16
  M2:
    layer: [45, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    width: 1
    color: "#008050"
  M3:
    layer: [49, 0]
    layer_in_name: true
    frame_color: "teal"
    fill_color: "#800057"
    hatch_pattern: coarsely dotted
  VIAC:
    layer: [40, 0]
    layer_in_name: true
    hatch_pattern: solid
    width: 1
    color: "#cc4c00"
  VIA1:
    layer: [44, 0]
    layer_in_name: true
    hatch_pattern: solid
    width: 1
    color: "grey"
  VIA2:
    layer: [43, 0]
    layer_in_name: true
    hatch_pattern: solid
    width: 1
    color: "#805000"
  CAPACITOR:
    layer: [42, 0]
    layer_in_name: true
    hatch_pattern: dotted
    width: 1
    color: "#805000"
  METALOPEN:
    layer: [46, 0]
    layer_in_name: true
    hatch_pattern: cross-hatched
    width: 1
    color: "#606060"
  DEEPTRENCH:
    layer: [4, 0]
    layer_in_name: true
    hatch_pattern: lightly right-hatched
    width: 1
    color: "#9999cc"
  OXIDE_ETCH:
    layer: [6, 0]
    layer_in_name: true
    hatch_pattern: strongly left-hatched dense
    width: 1
    color: "grey"
  SITILES:
    layer: [190, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    width: 1
    color: "grey"
  M1TILES:
    layer: [191, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    width: 1
    color: "#91ff00"
  LABEL_OPTICAL_IO:
    layer: [201, 0]
    layer_in_name: true
    hatch_pattern: hollow
    width: 1
    color: "blue"
  LABEL_SETTINGS:
    layer: [202, 0]
    layer_in_name: true
    hatch_pattern: hollow
    visible: false
    width: 1
    color: "magenta"
  TE:
    layer: [203, 0]
    layer_in_name: true
    transparent: true
    width: 1
    color: "blue"
  TM:
    layer: [204, 0]
    layer_in_name: true
    width: 1
    color: "red"
  LABEL_INSTANCES:
    layer: [206, 0]
    layer_in_name: true
    hatch_pattern: lightly left-hatched
    color: "red"
  DICING:
    layer: [65, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    width: 1
    color: "#cc0000"
  DRC_EXCLUDE:
    layer: [67, 0]
    layer_in_name: true
    hatch_pattern: hollow
    visible: false
    width: 2
    color: "grey"
  FLOORPLAN:
    layer: [64, 0]
    layer_in_name: true
    hatch_pattern: hollow
    color: "pink"
  simulation:
    group_members:
      SIM_REGION:
        layer: [100, 0]
        layer_in_name: true
        hatch_pattern: hollow
        color: "grey"
      MONITOR:
        layer: [101, 0]
        layer_in_name: true
        hatch_pattern: hollow
        color: "blue"
      SOURCE:
        layer: [110, 0]
        layer_in_name: true
        hatch_pattern: hollow
        color: "red"
  Lumerical:
    layer: [733, 0]
    hatch_pattern: hollow
    width: 3
    color: "#800057"
  DevRec:
    layer: [68, 0]
    hatch_pattern: hollow
    visible: false
    transparent: true
    width: 1
    color: "#004080"
  PinRec:
    layer: [1, 10]
    hatch_pattern: hollow
    color: "#404040"
  FbrTgt:
    layer: [81, 0]
    hatch_pattern: lightly right-hatched
    width: 2
    color: "#004080"
  Text:
    layer: [66, 0]
    hatch_pattern: hollow
    width: 1
    color: "gray"
  Errors:
    layer: [69, 0]
    hatch_pattern: hollow
    width: 1
    color: "gray"
  PinRecM:
    layer: [1, 11]
    hatch_pattern: hollow
    width: 1
    color: "#004080"
  XSECTION:
    group_members:
      XS_BOX:
        layer: [300, 0]
        layer_in_name: true
        width: 1
        color: "#f3ff80"
        hatch_pattern: solid
      XS_SI:
        layer: [301, 0]
        layer_in_name: true
        width: 1
        color: "grey"
        hatch_pattern: solid
      XS_SIN:
        layer: [319, 0]
        layer_in_name: true
        width: 1
        color: "grey"
        hatch_pattern: solid
      XS_N:
        layer: [320, 0]
        layer_in_name: true
        width: 1
        color: "#008ca5"
        hatch_pattern: solid
      XS_NPP:
        layer: [321, 0]
        layer_in_name: true
        width: 1
        color: "#004ca5"
        hatch_pattern: solid
      XS_P:
        layer: [330, 0]
        layer_in_name: true
        width: 1
        color: "#00f233"
        hatch_pattern: solid
      XS_PDPP:
        layer: [327, 0]
        layer_in_name: true
        width: 1
        color: "#00f233"
        hatch_pattern: solid
      XS_PPP:
        layer: [331, 0]
        layer_in_name: true
        width: 1
        color: "#00b233"
        hatch_pattern: solid
      XS_SI_SLAB:
        layer: [313, 0]
        layer_in_name: true
        width: 1
        color: "#80a8ff"
        hatch_pattern: solid
      XS_OVERLAY:
        layer: [311, 0]
        layer_in_name: true
        width: 1
        color: "blue"
        hatch_pattern: solid
      XS_OX_SI:
        layer: [302, 0]
        layer_in_name: true
        width: 1
        color: "#f3ff80"
        hatch_pattern: solid
      XS_GE:
        layer: [315, 0]
        layer_in_name: true
        width: 1
        color: "#004ca5"
        hatch_pattern: solid
      XS_VIAC:
        layer: [303, 0]
        layer_in_name: true
        width: 1
        color: "grey"
        hatch_pattern: solid
      XS_OX_NIT_CLAD:
        layer: [304, 0]
        layer_in_name: true
        width: 1
        color: "#f3ff80"
        hatch_pattern: solid
      XS_OXIDE_M1:
        layer: [305, 0]
        layer_in_name: true
        width: 1
        color: "#f3ff80"
        hatch_pattern: solid
      XS_MH:
        layer: [306, 0]
        layer_in_name: true
        width: 1
        color: "green"
        hatch_pattern: solid
      XS_OXIDE_M2:
        layer: [307, 0]
        layer_in_name: true
        width: 1
        color: "#f3ff80"
        hatch_pattern: solid
      XS_OXIDE_MH:
        layer: [317, 0]
        layer_in_name: true
        width: 1
        color: "#f3ff80"
        hatch_pattern: solid
      XS_OXIDE_ML:
        layer: [309, 0]
        layer_in_name: true
        width: 1
        color: "#f3ff80"
        hatch_pattern: solid
      XS_VIA1:
        layer: [308, 0]
        layer_in_name: true
        width: 1
        color: "grey"
        hatch_pattern: solid
      XS_M2:
        layer: [399, 0]
        layer_in_name: true
        width: 1
        color: "#805000"
        hatch_pattern: solid
      XS_OXIDE_M3:
        layer: [311, 0]
        layer_in_name: true
        width: 1
        color: "#f3ff80"
        hatch_pattern: solid
      XS_VIA2:
        layer: [310, 0]
        layer_in_name: true
        width: 1
        color: "grey"
        hatch_pattern: solid
      XS_SIN2:
        layer: [305, 0]
        layer_in_name: true
        width: 1
        color: "#805000"
        hatch_pattern: solid
  DRC_MARKER:
    layer: [205, 0]
    layer_in_name: true
    transparent: true
    width: 3
    color: "red"
  NOTILE_M1:
    layer: [71, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    visible: false
    color: "grey"
  NOTILE_M2:
    layer: [72, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    visible: false
    color: "grey"
  NOTILE_M3:
    layer: [73, 0]
    layer_in_name: true
    hatch_pattern: coarsely dotted
    visible: false
    color: "#606060"
  gdsfactory:
    group_members:
      ERROR_PATH:
        layer: [1000, 0]
        layer_in_name: true
        transparent: true
        width: 3
        color: "red"
      SHOW_PORTS:
        layer: [1, 12]
        layer_in_name: true
        hatch_pattern: lightly left-hatched
        color: "#ff80a8"
      WAFER:
        layer: [999, 0]
        hatch_pattern: lightly left-hatched
        color: "#ff80a8"
        visible: false

Once you modify the YAML file you can easily write it to klayout layer properties lyp or the other way around.

YAML <---> LYP

The functions LayerView.to_lyp(filepath) and LayerView.to_yaml(filepath) allow you to convert from each other.

LYP is based on XML so it’s much easier to make changes and maintain the equivalent YAML file.

YAML -> LYP#

You can easily convert from YAML into Klayout Layer Properties.

LAYER_VIEWS = LayerViews(filepath=PATH.klayout_lyp)
LAYER_VIEWS.to_lyp("extra/klayout_layers.lyp")
PosixPath('extra/klayout_layers.lyp')

LYP -> YAML#

Sometimes you start from an LYP XML file. We recommend converting to YAML and using the YAML as the layer views source of truth.

Layers in YAML are easier to read and modify than doing it in klayout XML format.

LAYER_VIEWS = LayerViews(filepath=PATH.klayout_lyp)
LAYER_VIEWS.to_yaml("extra/layers.yaml")

Preview layerset#

You can preview all the layers defined in your LayerViews

c = LAYER_VIEWS.preview_layerset()
c.plot()
../_images/36d23fc7fc6b5b5453c49856a3301239f14a5d8005192c4c9e9972f1e910ec07.png

By default the generic PDK has some layers that are not visible and therefore are not shown.

c_wg_clad = c.extract(layers=[(1, 0)])
c_wg_clad.plot()
../_images/7f79129387604461984d2c2fd4dadf3b6dec1006a548ba3445784b26cb7e01a1.png
LAYER_VIEWS.layer_views["WGCLAD"]
LayerView:
	info: None
	layer: (111, 0)
	layer_in_name: True
	frame_color: silver
	fill_color: silver
	frame_brightness: 0
	fill_brightness: 0
	hatch_pattern: coarsely dotted
	line_style: None
	valid: True
	visible: False
	transparent: False
	width: 1
	marked: False
	xfill: False
	animation: 0
	group_members: {}
LAYER_VIEWS.layer_views["WGCLAD"].visible
False

You can make it visible

LAYER_VIEWS.layer_views["WGCLAD"].visible = True
LAYER_VIEWS.layer_views["WGCLAD"].visible
True
c_ge = c.extract(layers=[(5, 0)])
c_ge.plot()
../_images/d292bdba0a99d502db02c3e0e0d09c3622b240735711edb8c3edd27510f33f08.png

LayerStack#

Each layer also includes the information of thickness and position of each layer after fabrication.

This LayerStack can be used for creating a 3D model with Component.to_3d or running Simulations.

A GDS has different layers to describe the different fabrication process steps. And each grown layer needs thickness information and z-position in the stack.

layer stack

Lets define the layer stack for the generic layers in the generic_technology.

import gdsfactory as gf
from gdsfactory.generic_tech.layer_map import LAYER
from gdsfactory.technology import LogicalLayer

nm = 1e-3
thickness_wg = 220 * nm
thickness_slab_deep_etch = 90 * nm
thickness_slab_shallow_etch = 150 * nm

sidewall_angle_wg = 0
layer_core = LogicalLayer(layer=LAYER.WG)
layer_shallow_etch = LogicalLayer(layer=LAYER.SHALLOW_ETCH)
layer_deep_etch = LogicalLayer(layer=LAYER.DEEP_ETCH)


layers = {
    "core": LayerLevel(
        layer=layer_core - layer_deep_etch - layer_shallow_etch,
        thickness=thickness_wg,
        zmin=0.0,
        material="si",
        mesh_order=2,
        sidewall_angle=sidewall_angle_wg,
        width_to_z=0.5,
        derived_layer=layer_core,
    ),
    "shallow_etch": LayerLevel(
        layer=LogicalLayer(layer=LAYER.SHALLOW_ETCH),
        thickness=thickness_wg - thickness_slab_shallow_etch,
        zmin=0.0,
        material="si",
        mesh_order=1,
        derived_layer=LogicalLayer(layer=LAYER.SLAB150),
    ),
    "deep_etch": LayerLevel(
        layer=LogicalLayer(layer=LAYER.DEEP_ETCH),
        thickness=thickness_wg - thickness_slab_deep_etch,
        zmin=0.0,
        material="si",
        mesh_order=1,
        derived_layer=LogicalLayer(layer=LAYER.SLAB90),
    ),
    "slab150": LayerLevel(
        layer=LogicalLayer(layer=LAYER.SLAB150),
        thickness=150e-3,
        zmin=0,
        material="si",
        mesh_order=3,
    ),
    "slab90": LayerLevel(
        layer=LogicalLayer(layer=LAYER.SLAB90),
        thickness=thickness_slab_deep_etch,
        zmin=0.0,
        material="si",
        mesh_order=2,
    ),
}


layer_stack = LayerStack(layers=layers)

c = gf.c.grating_coupler_elliptical_trenches()
s = c.to_3d(layer_stack=layer_stack)
s.show()
from gdsfactory.generic_tech.layer_stack import get_layer_stack

layer_stack220 = get_layer_stack()

c = gf.c.straight_heater_doped_rib(length=100)
c
../_images/d6753a210e697bcee3610d9a8d63db5fb54c0efb67eed7c6e7ca576784cd7289.png
scene = c.to_3d(layer_stack=layer_stack220)
scene.show()
c = gf.components.straight_heater_metal(length=90)
c.plot()
../_images/6e6e4e4daf7fb948853be6e964035b6bb38ec56c5b0c1767e9f63f2103f63ff2.png
scene = c.to_3d(layer_stack=layer_stack220)
scene.show()
c = gf.components.taper_strip_to_ridge_trenches()
c.plot()
../_images/f1438f99f6e46a4b43eab6bbce4248a6a90ddead3dd3bf37e6298e7acfe4f67e.png
scene = c.to_3d(layer_stack=layer_stack220)
scene.show()
# lets assume we have 900nm silicon instead of 220nm, You will see a much thicker waveguide under the metal heater.
layer_stack900 = get_layer_stack(thickness_wg=900 * nm)
scene = c.to_3d(layer_stack=layer_stack900)
scene.show()
import gdsfactory as gf

c = gf.components.grating_coupler_elliptical_trenches()
c.plot()
../_images/fde4d6ca05f5cf4cb012400e5918d6ef9f6c2ce9fbcec6559bb9f113af1453a7.png
scene = c.to_3d()
scene.show()

3D rendering#

To render components in 3D you will need to define two things:

  1. LayerStack: for each layer contains thickness of each material and z position

  2. LayerViews: for each layer contains view (color, pattern, opacity). You can load it with gf.technology.LayerView.load_lyp()

heater = gf.components.straight_heater_metal(length=90)
heater.plot()
../_images/6e6e4e4daf7fb948853be6e964035b6bb38ec56c5b0c1767e9f63f2103f63ff2.png
scene = heater.to_3d()
scene.show()

Klayout 2.5D view#

From the LayerStack you can generate the KLayout 2.5D view script.

LAYER_STACK.get_klayout_3d_script()
'core = input(1, 0)\nshallow_etch = input(2, 0)\ndeep_etch = input(3, 0)\n\nsubstrate = input(999, 0)\nbox = input(999, 0)\ndeep_etch = input(3, 6)\nclad = input(999, 0)\nslab150 = input(2, 0)\nslab90 = input(3, 0)\nnitride = input(34, 0)\nge = input(5, 0)\nundercut = input(6, 0)\nvia_contact = input(40, 0)\nmetal1 = input(41, 0)\nheater = input(47, 0)\nvia1 = input(44, 0)\nmetal2 = input(45, 0)\nvia2 = input(43, 0)\nmetal3 = input(49, 0)\n\nunetched_WG = WG - core\nunetched_SLAB150 = SLAB150 - shallow_etch\n\nslab_WG_core = WG & core\nslab_SLAB150_shallow_etch = SLAB150 & shallow_etch\nslab_SLAB90_deep_etch = SLAB90 & deep_etch\n\n'

Then you go go Tools → Manage Technologies

klayout

and Paste the 2.5D view script

paste

Klayout cross-section#

You can also install the KLayout cross-section plugin

xsection

This is not integrated with the LayerStack but you can customize the script in gdsfactory.generic_tech.get_klayout_pyxs for your technology.

nm = 1e-3
if __name__ == "__main__":
    script = get_klayout_pyxs(
        t_box=2.0,
        t_slab=110 * nm,
        t_si=220 * nm,
        t_ge=400 * nm,
        t_nitride=400 * nm,
        h_etch1=0.07,
        h_etch2=0.06,
        h_etch3=0.09,
        t_clad=0.6,
        t_m1=0.5,
        t_m2=0.5,
        t_m3=2.0,
        gap_m1_m2=0.6,
        gap_m2_m3=0.3,
        t_heater=0.1,
        gap_oxide_nitride=0.82,
        t_m1_oxide=0.6,
        t_m2_oxide=2.0,
        t_m3_oxide=0.5,
        layer_wg=(1, 0),
        layer_fc=(2, 0),
        layer_rib=LAYER.SLAB90,
        layer_n=LAYER.N,
        layer_np=LAYER.NP,
        layer_npp=LAYER.NPP,
        layer_p=LAYER.P,
        layer_pp=LAYER.PP,
        layer_ppp=LAYER.PPP,
        layer_PDPP=LAYER.GEP,
        layer_nitride=LAYER.WGN,
        layer_Ge=LAYER.GE,
        layer_GePPp=LAYER.GEP,
        layer_GeNPP=LAYER.GEN,
        layer_viac=LAYER.VIAC,
        layer_viac_slot=LAYER.VIAC,
        layer_m1=LAYER.M1,
        layer_mh=LAYER.HEATER,
        layer_via1=LAYER.VIA1,
        layer_m2=LAYER.M2,
        layer_via2=LAYER.VIA2,
        layer_m3=LAYER.M3,
        layer_open=LAYER.PADOPEN,
    )

    # script_path = pathlib.Path(__file__).parent.absolute() / "xsection_planarized.pyxs"
    # script_path.write_text(script)
    print(script)
t_box=2.0
t_slab=0.11
t_si=0.22
t_ge=0.4
t_nitride=0.4
h_etch1=0.07
h_etch2=0.06
h_etch3=0.09
t_clad=0.6
t_m1=0.5
t_m2=0.5
t_m3=2.0
t_heater=0.1
gap_m1_m2=0.6
gap_m2_m3=0.3
gap_oxide_nitride=0.82
t_m1_oxide=0.6
t_m2_oxide=2.0
t_m3_oxide=0.5

l_wg = layer('1/0')
l_fc = layer('2/0')
l_rib = layer('3/0')

l_n = layer('20/0')
l_np = layer('22/0')
l_npp = layer('24/0')
l_p = layer('21/0')
l_pp = layer('23/0')
l_ppp = layer('25/0')
l_PDPP = layer('27/0')
l_bottom_implant = l_PDPP

l_nitride = layer('34/0')
l_Ge = layer('5/0')
l_GePPp = layer('27/0')
l_GeNPP = layer('26/0')

l_viac = layer('40/0')
l_viac_slot = layer('40/0')
l_m1 = layer('41/0')
l_mh = layer('47/0')
l_via1 = layer('44/0')
l_m2 = layer('45/0')
l_via2 = layer('43/0')
l_m3 = layer('49/0')
l_open = layer('46/0')

l_top_implant = l_GePPp.or_(l_GeNPP)
l_viac = l_viac.or_(l_viac_slot)

# Declare the basic accuracy used to remove artifacts for example: delta(5 * dbu)
delta(dbu)
depth(12.0)
height(12.0)

################ front-end

l_wg_etch1 = l_wg.inverted()  # protects ridge
l_wg_etch2 = (
    l_fc.or_(l_wg)
).inverted()  # protects ridge and grating couplers from the etch down to the slab (forms rib straights)
l_wg_etch3 = (
    l_rib.or_(l_fc).or_(l_wg)
).inverted()  # protects ridge, grating couplers and rib straights from the final etch to form strip straights


################ back-end
substrate = bulk
box = deposit(t_box)
si = deposit(t_si)

################ silicon etch to for the passives
mask(l_wg_etch1).etch(
    h_etch1, 0.0, mode="round", into=[si]
)  # 70nm etch for GC, rib and strip
mask(l_wg_etch2).etch(
    h_etch2, 0.0, mode="round", into=[si]
)  # 60nm etch after 70nm = 130nm etch (90nm slab)
mask(l_wg_etch3).etch(
    h_etch3, 0.0, mode="round", into=[si]
)  # etches the remaining 90nm slab for strip straights

output("300/0", box)
output("301/0", si)

############### doping
mask(l_bottom_implant).etch(t_si, 0.0, mode="round", into=[si])
bottom_implant = mask(l_bottom_implant).grow(t_si, 0.0, mode="round")

mask(l_n).etch(t_slab, 0.0, mode="round", into=[si])
n = mask(l_n).grow(t_slab, 0.0, mode="round")

mask(l_p).etch(t_slab, 0.0, mode="round", into=[si])
p = mask(l_p).grow(t_slab, 0.0, mode="round")

mask(l_np).etch(t_slab, 0.0, mode="round", into=[n, p, si, bottom_implant])
np = mask(l_np).grow(t_slab, 0.0, mode="round")

mask(l_pp).etch(t_slab, 0.0, mode="round", into=[n, p, si, bottom_implant])
pp = mask(l_pp).grow(t_slab, 0.0, mode="round")

mask(l_npp).etch(t_slab, 0.0, mode="round", into=[n, p, np, pp, si, bottom_implant])
npp = mask(l_npp).grow(t_slab, 0.0, mode="round")

mask(l_ppp).etch(t_slab, 0.0, mode="round", into=[n, p, np, pp, si, bottom_implant])
ppp = mask(l_ppp).grow(t_slab, 0.0, mode="round")

output("327/0", bottom_implant)
output("330/0", p)
output("320/0", n)
output("321/0", npp)
output("331/0", ppp)

################ Ge
Ge = mask(l_Ge).grow(t_ge, 0, bias=0.0, taper=10)
output("315/0", Ge)

################ Nitride
ox_nitride = deposit(2 * gap_oxide_nitride, 2 * gap_oxide_nitride)
planarize(less=gap_oxide_nitride, into=[ox_nitride])
output("302/0", ox_nitride)

nitride = mask(l_nitride).grow(t_nitride, 0, bias=0.0, taper=10)
output("305/0", nitride)

################# back-end
################# VIAC, M1 and MH
ox_nitride_clad = deposit(t_clad + t_ge + t_nitride, t_clad + t_ge + t_nitride, mode="round")

planarize(less=t_ge + t_nitride, into=[ox_nitride_clad])
mask(l_viac).etch(
    t_clad + t_ge + t_nitride + gap_oxide_nitride, taper=4, into=[ox_nitride_clad, ox_nitride]
)

viac = deposit(2 * t_clad, 2 * t_clad)
planarize(less=2 * t_clad, into=[viac])

mh = deposit(t_heater, t_heater)
mask(l_mh.inverted()).etch(t_heater + t_heater, into=[mh])
m1 = deposit(t_m1, t_m1)
mask(l_m1.inverted()).etch(t_m1 + t_m1, into=[m1])
output("306/0", mh)
output("399/0", m1)

output("304/0", ox_nitride_clad)
output("303/0", viac)

################# VIA1 and M2
ox_m1 = deposit(2 * t_m1_oxide, 2 * t_m1_oxide, mode="round")
planarize(less=t_m1_oxide, into=[ox_m1])

mask(l_via1).etch(t_m1_oxide + gap_m1_m2, taper=4, into=[ox_m1])
via1 = deposit(t_m2, t_m2)

mask(l_m2.inverted()).etch(t_m2, taper=4, into=[via1])
output("308/0", via1)

ox_m2 = deposit(2 * t_m2_oxide, 2 * t_m2_oxide, mode="round")
planarize(less=t_m2_oxide, into=[ox_m2])
output("309/0", ox_m2)
output("307/0", ox_m1)

################# VIA2 and M3
mask(l_via2).etch(t_m2_oxide + gap_m2_m3, taper=4, into=[ox_m2, ox_m2])
via2 = deposit(t_m3, t_m3)
mask(l_m3.inverted()).etch(t_m3, taper=4, into=[via2])
output("310/0", via2)

################# passivation and ML Open
ox_m3 = deposit(t_m3_oxide, t_m3_oxide, mode="round")
mask(l_open).etch(t_m3_oxide + t_m3_oxide, into=[ox_m3], taper=5)
output("311/0", ox_m3)

xsection generic

Process#

The LayerStack uses the GDS layers to generate a representation of the chip after fabrication.

The KLayout cross-section module uses the GDS layers to return a geometric approximation of the processed wafer.

Sometimes, however, physical process modeling is desired.

For these purposes, Processes acting on an initial substrate “wafer stack” can be defined. The waferstack is a LayerStack representing the initial state of the wafer. The processes take in some combination of GDS layers (which may differ from their use in the resulting LayerStack), some processing parameters, and are then run in a sequence.

For instance, the early step of the front-end-of-line of the generic process could be approximated as done in gdsfactory.technology.layer_stack (the process classes are described in gdsfactory.technology.processes):

import gdsfactory.technology.processes as gp


def get_process():
    """Returns generic process to generate LayerStack.

    Represents processing steps that will result in the GenericLayerStack, starting from the waferstack LayerStack.

    based on paper https://www.degruyter.com/document/doi/10.1515/nanoph-2013-0034/html
    """
    return (
        gp.Etch(
            name="strip_etch",
            layer=(1, 0),
            positive_tone=False,
            depth=0.22 + 0.01,  # slight overetch for numerics
            material="core",
            resist_thickness=1.0,
        ),
        gp.Etch(
            name="slab_etch",
            layer=LAYER.SLAB90,
            layers_diff=[(1, 0)],
            depth=0.22 - 0.09,
            material="core",
            resist_thickness=1.0,
        ),
        # See gplugins.process.implant tables for ballpark numbers
        # Adjust to your process
        gp.ImplantPhysical(
            name="deep_n_implant",
            layer=LAYER.N,
            energy=100,
            ion="P",
            dose=1e12,
            resist_thickness=1.0,
        ),
        gp.ImplantPhysical(
            name="shallow_n_implant",
            layer=LAYER.N,
            energy=50,
            ion="P",
            dose=1e12,
            resist_thickness=1.0,
        ),
        gp.ImplantPhysical(
            name="deep_p_implant",
            layer=LAYER.P,
            energy=50,
            ion="B",
            dose=1e12,
            resist_thickness=1.0,
        ),
        gp.ImplantPhysical(
            name="shallow_p_implant",
            layer=LAYER.P,
            energy=15,
            ion="B",
            dose=1e12,
            resist_thickness=1.0,
        ),
        # "Temperatures of ~1000C for not more than a few seconds"
        # Adjust to your process
        # https://en.wikipedia.org/wiki/Rapid_thermal_processing
        gp.Anneal(
            name="dopant_activation",
            time=1,
            temperature=1000,
        ),
    )


process = get_process()

These process dataclasses can then be used in physical simulator plugins.