PCells

Contents

PCells#

Parametric Cells for the Generic PDK.

Consider them a foundation from which you can draw inspiration. Feel free to modify their cross-sections and layers to tailor a unique PDK suited for any foundry of your choice.

By doing so, you’ll possess a versatile, retargetable PDK, empowering you to design your circuits with speed and flexibility.

components#

analog#

gdsfactory.components.analog.interdigital_capacitor(fingers: int = 4, finger_length: float | int = 20.0, finger_gap: float | int = 2.0, thickness: float | int = 5.0, layer: LayerSpec = 'WG') Component[source]#

Generates an interdigital capacitor with ports on both ends.

See for example Zhu et al., Accurate circuit model of interdigital capacitor and its application to design of new uasi-lumped miniaturized filters with suppression of harmonic resonance, doi: 10.1109/22.826833.

Note

finger_length=0 effectively provides a plate capacitor.

Parameters:
  • fingers – total fingers of the capacitor.

  • finger_length – length of the probing fingers.

  • finger_gap – length of gap between the fingers.

  • thickness – Thickness of fingers and section before the fingers.

  • layer – spec.

import gdsfactory as gf

c = gf.components.interdigital_capacitor(fingers=4, finger_length=20, finger_gap=2, thickness=5, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-1.png

bends#

gdsfactory.components.bends.bend_circular(radius: float | None = None, angle: float = 90.0, npoints: int | None = None, layer: tuple[int, int] | str | int | LayerEnum | None = None, width: float | None = None, cross_section: CrossSectionSpec = 'strip', allow_min_radius_violation: bool = False) Component[source]#

Returns a radial arc.

Parameters:
  • radius – in um. Defaults to cross_section_radius.

  • angle – angle of arc (degrees).

  • npoints – number of points.

  • layer – layer to use. Defaults to cross_section.layer.

  • width – width to use. Defaults to cross_section.width.

  • cross_section – spec (CrossSection, string or dict).

  • allow_min_radius_violation – if True allows radius to be smaller than cross_section radius.

import gdsfactory as gf

c = gf.components.bend_circular(angle=90, cross_section='strip', allow_min_radius_violation=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-2.png
gdsfactory.components.bends.bend_circular_heater(radius: float | None = None, angle: float = 90, npoints: int | None = None, heater_to_wg_distance: float = 1.2, heater_width: float = 0.5, layer_heater: LayerSpec = 'HEATER', cross_section: CrossSectionSpec = 'strip', allow_min_radius_violation: bool = False) Component[source]#

Creates an arc of arclength theta starting at angle start_angle.

Parameters:
  • radius – in um. Defaults to cross_section.radius.

  • angle – angle of arc (degrees).

  • npoints – Number of points used per 360 degrees.

  • heater_to_wg_distance – in um.

  • heater_width – in um.

  • layer_heater – for heater.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

  • allow_min_radius_violation – if True allows radius to be smaller than cross_section radius.

import gdsfactory as gf

c = gf.components.bend_circular_heater(angle=90, heater_to_wg_distance=1.2, heater_width=0.5, layer_heater='HEATER', cross_section='strip', allow_min_radius_violation=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-3.png
gdsfactory.components.bends.bend_euler(radius: float | None = None, angle: float = 90.0, p: float = 0.5, with_arc_floorplan: bool = True, npoints: int | None = None, layer: LayerSpec | None = None, width: float | None = None, cross_section: CrossSectionSpec = 'strip', allow_min_radius_violation: bool = False) Component[source]#

Regular degree euler bend.

Parameters:
  • radius – in um. Defaults to cross_section_radius.

  • angle – total angle of the curve.

  • p – Proportion of the curve that is an Euler curve.

  • with_arc_floorplan – If False: radius is the minimum radius of curvature.

  • npoints – Number of points used per 360 degrees.

  • layer – layer to use. Defaults to cross_section.layer.

  • width – width to use. Defaults to cross_section.width.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

  • allow_min_radius_violation – if True allows radius to be smaller than cross_section radius.

import gdsfactory as gf

c = gf.components.bend_euler(angle=90, p=0.5, with_arc_floorplan=True, cross_section='strip', allow_min_radius_violation=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-4.png
gdsfactory.components.bends.bend_euler_s(radius: float | None = None, p: float = 0.5, with_arc_floorplan: bool = True, npoints: int | None = None, layer: LayerSpec | None = None, width: float | None = None, cross_section: CrossSectionSpec = 'strip', allow_min_radius_violation: bool = False, port1: str = 'o1', port2: str = 'o2') Component[source]#

Sbend made of 2 euler bends.

Parameters:
  • radius – in um. Defaults to cross_section_radius.

  • p – Proportion of the curve that is an Euler curve.

  • with_arc_floorplan – If False: radius is the minimum radius of curvature.

  • npoints – Number of points used per 360 degrees.

  • layer – layer to use. Defaults to cross_section.layer.

  • width – width to use. Defaults to cross_section.width.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

  • allow_min_radius_violation – if True allows radius to be smaller than cross_section radius.

  • port1 – input port name.

  • port2 – output port name.

               _____ o2
              /
             /
            /
           /
           |
          /
         /
        /
o1_____/
import gdsfactory as gf

c = gf.components.bend_euler_s(p=0.5, with_arc_floorplan=True, cross_section='strip', allow_min_radius_violation=False, port1='o1', port2='o2').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-5.png
gdsfactory.components.bends.bend_s(size: tuple[float, float] = (11.0, 1.8), npoints: int = 99, cross_section: CrossSectionSpec = 'strip', allow_min_radius_violation: bool = False) Component[source]#

Return S bend with bezier curve.

stores min_bend_radius property in self.info[‘min_bend_radius’] min_bend_radius depends on height and length

Parameters:
  • size – in x and y direction.

  • npoints – number of points.

  • cross_section – spec.

  • allow_min_radius_violation – bool.

import gdsfactory as gf

c = gf.components.bend_s(size=(11, 1.8), npoints=99, cross_section='strip', allow_min_radius_violation=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-6.png
gdsfactory.components.bends.bezier(control_points: Sequence[tuple[float, float]] = ((0.0, 0.0), (5.0, 0.0), (5.0, 1.8), (10.0, 1.8)), npoints: int = 201, with_manhattan_facing_angles: bool = True, start_angle: int | None = None, end_angle: int | None = None, cross_section: CrossSectionSpec = 'strip', bend_radius_error_type: ErrorType | None = None, allow_min_radius_violation: bool = False) Component[source]#

Returns Bezier bend.

Parameters:
  • control_points – list of points.

  • npoints – number of points varying between 0 and 1.

  • with_manhattan_facing_angles – bool.

  • start_angle – optional start angle in deg.

  • end_angle – optional end angle in deg.

  • cross_section – spec.

  • bend_radius_error_type – error type.

  • allow_min_radius_violation – bool.

import gdsfactory as gf

c = gf.components.bezier(control_points=((0, 0), (5, 0), (5, 1.8), (10, 1.8)), npoints=201, with_manhattan_facing_angles=True, cross_section='strip', allow_min_radius_violation=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-7.png

containers#

gdsfactory.components.containers.add_fiber_array_optical_south_electrical_north(component: str | Callable[[...], Component] | dict[str, Any] | KCell, pad: str | Callable[[...], Component] | dict[str, Any] | KCell, grating_coupler: str | Callable[[...], Component] | dict[str, Any] | KCell, cross_section_metal: CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection, with_loopback: bool = True, pad_pitch: float = 100.0, pitch: float = 127.0, pad_gc_spacing: float = 250.0, electrical_port_names: list[str] | None = None, electrical_port_orientation: float | None = 90, npads: int | None = None, port_types_grating_couplers: list[str] | None = None, pad_spacing: float | None = None, **kwargs: Any) Component[source]#

Returns a fiber array with Optical gratings on South and Electrical pads on North.

This a test configuration for DC pads.

Parameters:
  • component – component spec to add fiber and pads.

  • pad – pad spec.

  • grating_coupler – grating coupler function.

  • cross_section_metal – metal cross section.

  • with_loopback – whether to add a loopback port.

  • pad_pitch – spacing between pads.

  • pitch – spacing between grating couplers.

  • pad_gc_spacing – spacing between pads and grating couplers.

  • electrical_port_names – list of electrical port names. Defaults to all.

  • electrical_port_orientation – orientation of electrical ports. Defaults to 90.

  • npads – number of pads. Defaults to one per electrical_port_names.

  • port_types_grating_couplers – port types for grating couplers. Defaults to vertical TE, TM, and dual.

  • pad_spacing – (deprecated).

  • kwargs – additional arguments.

Keyword Arguments:
  • layer_label – layer for settings label.

  • measurement – measurement name.

  • measurement_settings – measurement settings.

  • analysis – analysis name.

  • doe – Design of Experiment.

  • anchor – anchor point for the label. Defaults to south-west “sw”. Valid options are: “n”, “s”, “e”, “w”, “ne”, “nw”, “se”, “sw”, “c”.

  • gc_port_name – grating coupler input port name.

  • gc_port_labels – grating coupler list of labels.

  • component_name – optional for the label.

  • select_ports – function to select ports.

  • cross_section – cross_section function.

  • get_input_labels_function – function to get input labels. None skips labels.

  • layer_label – optional layer for grating coupler label.

  • bend – bend spec.

  • straight – straight spec.

  • taper – taper spec.

  • get_input_label_text_loopback_function – function to get input label test.

  • get_input_label_text_function – for labels.

  • fanout_length – if None, automatic calculation of fanout length.

  • max_y0_optical – in um.

  • with_loopback – True, adds loopback structures.

  • straight_separation – from edge to edge.

  • list_port_labels – None, adds TM labels to port indices in this list.

  • connected_port_list_ids – names of ports only for type 0 optical routing.

  • nb_optical_ports_lines – number of grating coupler lines.

  • force_manhattan – False

  • excluded_ports – list of port names to exclude when adding gratings.

  • grating_indices – list of grating coupler indices.

  • routing_straight – function to route.

  • routing_method – route_single.

  • gc_rotation – fiber coupler rotation in degrees. Defaults to -90.

  • input_port_indexes – to connect.

import gdsfactory as gf

c = gf.components.add_fiber_array_optical_south_electrical_north(with_loopback=True, pad_pitch=100, pitch=127, pad_gc_spacing=250, electrical_port_orientation=90).copy()
c.draw_ports()
c.plot()

(Source code)

gdsfactory.components.containers.add_termination(component: ComponentSpec = 'straight', port_names: tuple[str, ...] | None = None, terminator: ComponentSpec = functools.partial(<function taper>, width2=0.1), terminator_port_name: str | None = None) Component[source]#

Returns component with terminator on some ports.

Parameters:
  • component – to add terminator.

  • port_names – ports to add terminator.

  • terminator – factory for the terminator.

  • terminator_port_name – for the terminator to connect to the component ports.

import gdsfactory as gf

c = gf.components.add_termination(component='straight').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-9.png
gdsfactory.components.containers.add_trenches(component: ComponentSpec = 'coupler', layer_component: LayerSpec = 'WG', layer_trench: LayerSpec = 'DEEP_ETCH', width_trench: float = 2.0, cross_section: CrossSectionSpec = 'rib_with_trenches', top: float | None = None, bot: float | None = None, right: float | None = 0, left: float | None = 0, **kwargs: Any) Component[source]#

Return component with trenches.

Parameters:
  • component – component to add to the trenches.

  • layer_component – layer of the component.

  • layer_trench – layer of the trenches.

  • width_trench – width of the trenches.

  • cross_section – spec (CrossSection, string or dict).

  • top – width of the trench on the top. If None uses width_trench.

  • bot – width of the trench on the bottom. If None uses width_trench.

  • right – width of the trench on the right. If None uses width_trench.

  • left – width of the trench on the left. If None uses width_trench.

  • kwargs – component settings.

import gdsfactory as gf

c = gf.components.add_trenches(component='coupler', layer_component='WG', layer_trench='DEEP_ETCH', width_trench=2, cross_section='rib_with_trenches', right=0, left=0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-10.png
gdsfactory.components.containers.add_trenches90(*, component: ComponentSpec = 'bend_euler', layer_component: LayerSpec = 'WG', layer_trench: LayerSpec = 'DEEP_ETCH', width_trench: float = 2.0, cross_section: CrossSectionSpec = 'rib_with_trenches', top: float | None = 0, bot: float | None = None, right: float | None = None, left: float | None = 0, **kwargs: Any) gf.Component#

Return component with trenches.

Parameters:
  • component – component to add to the trenches.

  • layer_component – layer of the component.

  • layer_trench – layer of the trenches.

  • width_trench – width of the trenches.

  • cross_section – spec (CrossSection, string or dict).

  • top – width of the trench on the top. If None uses width_trench.

  • bot – width of the trench on the bottom. If None uses width_trench.

  • right – width of the trench on the right. If None uses width_trench.

  • left – width of the trench on the left. If None uses width_trench.

  • kwargs – component settings.

import gdsfactory as gf

c = gf.components.add_trenches90(component='bend_euler', layer_component='WG', layer_trench='DEEP_ETCH', width_trench=2, cross_section='rib_with_trenches', top=0, left=0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-11.png
gdsfactory.components.containers.array(component: ComponentSpec = 'pad', spacing: tuple[float, float] | None = None, columns: int = 6, rows: int = 1, column_pitch: float = 150, row_pitch: float = 150, add_ports: bool = True, size: tuple[float, float] | None = None, centered: bool = False, post_process: Sequence[Callable[[Component], None]] | None = None, auto_rename_ports: bool = False) Component[source]#

Returns an array of components.

Parameters:
  • component – to replicate.

  • spacing – x, y spacing (deprecated).

  • columns – in x.

  • rows – in y.

  • column_pitch – pitch between columns.

  • row_pitch – pitch between rows.

  • auto_rename_ports – True to auto rename ports.

  • add_ports – add ports from component into the array.

  • size – Optional x, y size. Overrides columns and rows.

  • centered – center the array around the origin.

  • post_process – function to apply to the array after creation.

Raises:
  • ValueError – If columns > 1 and spacing[0] = 0.

  • ValueError – If rows > 1 and spacing[1] = 0.

2 rows x 4 columns

  column_pitch
  <---------->
 ___        ___       ___        ___
|   |      |   |     |   |      |   |
|___|      |___|     |___|      |___|

 ___        ___       ___        ___
|   |      |   |     |   |      |   |
|___|      |___|     |___|      |___|
import gdsfactory as gf

c = gf.components.array(component='pad', columns=6, rows=1, column_pitch=150, row_pitch=150, add_ports=True, centered=False, auto_rename_ports=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-12.png
gdsfactory.components.containers.component_sequence(sequence: str, symbol_to_component: dict[str, tuple[Component, str, str]], ports_map: dict[str, tuple[str, str]] | None = None, port_name1: str = 'o1', port_name2: str = 'o2', start_orientation: float = 0.0) Component[source]#

Returns component from ASCII sequence.

if you prefix a symbol with ! it mirrors the component

Parameters:
  • sequence – a string or a list of symbols.

  • symbol_to_component – maps symbols to (component, input, output).

  • ports_map – (optional) extra port mapping using the convention. {port_name: (alias_name, port_name)}

  • port_name1 – input port_name.

  • port_name2 – output port_name.

  • start_orientation – in degrees.

Returns:

containing the sequence of sub-components

instantiated and connected together in the sequence order.

Return type:

component

import gdsfactory as gf

bend180 = gf.components.bend_circular180()
wg_pin = gf.components.straight_pin(length=40)
wg = gf.components.straight()

# Define a map between symbols and (component, input port, output port)
symbol_to_component = {
    "A": (bend180, 'o1', 'o2'),
    "B": (bend180, 'o2', 'o1'),
    "H": (wg_pin, 'o1', 'o2'),
    "-": (wg, 'o1', 'o2'),
}

# Each character in the sequence represents a component
s = "AB-H-H-H-H-BA"
c = gf.components.component_sequence(sequence=s, symbol_to_component=symbol_to_component)
c.plot()

(Source code, png, hires.png, pdf)

_images/components-13.png
gdsfactory.components.containers.copy_layers(factory: ComponentSpec = 'cross', layers: LayerSpecs = ((1, 0), (2, 0)), **kwargs: Any) Component[source]#

Returns a component with the geometry copied in different layers.

Parameters:
  • factory – component spec.

  • layers – iterable of layers.

  • kwargs – keyword arguments.

import gdsfactory as gf

c = gf.components.copy_layers(factory='cross', layers=((1, 0), (2, 0))).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-14.png
gdsfactory.components.containers.extend_ports(component: ComponentSpec = 'mmi1x2', port_names: PortNames | None = None, length: float = 5.0, extension: ComponentSpec | None = None, port1: str | None = None, port2: str | None = None, port_type: str = 'optical', centered: bool = False, cross_section: CrossSectionSpec | None = None, extension_port_names: list[str] | None = None, allow_width_mismatch: bool = False, auto_taper: bool = True, **kwargs: Any) Component[source]#

Returns a new component with some ports extended.

You can define extension Spec defaults to port cross_section of each port to extend.

Parameters:
  • component – component to extend ports.

  • port_names – list of ports names to extend, if None it extends all ports.

  • length – extension length.

  • extension – function to extend ports (defaults to a straight).

  • port1 – extension input port name.

  • port2 – extension output port name.

  • port_type – type of the ports to extend.

  • centered – if True centers rectangle at (0, 0).

  • cross_section – extension cross_section, defaults to port cross_section if port has no cross_section it creates one using width and layer.

  • extension_port_names – extension port names add to the new component.

  • allow_width_mismatch – allow width mismatches.

  • auto_taper – if True adds automatic tapers.

  • kwargs – cross_section settings.

Keyword Arguments:
  • layer – port GDS layer.

  • prefix – port name prefix.

  • orientation – in degrees.

  • width – port width.

  • layers_excluded – List of layers to exclude.

  • port_type – optical, electrical, ….

  • clockwise – if True, sort ports clockwise, False: counter-clockwise.

import gdsfactory as gf

c = gf.components.extend_ports(component='mmi1x2', length=5, port_type='optical', centered=False, allow_width_mismatch=False, auto_taper=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-15.png
gdsfactory.components.containers.extend_ports_list(ports: Ports | Sequence[Port] | InstancePorts, extension: ComponentSpec, extension_port_name: str | None = None, ignore_ports: Sequence[str] | None = None) Component[source]#

Returns a component with an extension attached to a list of ports.

Parameters:
  • ports – list of ports.

  • extension – function for extension.

  • extension_port_name – to connect extension.

  • ignore_ports – list of port names to ignore.

gdsfactory.components.containers.splitter_chain(splitter: ComponentSpec = 'mmi1x2', columns: int = 3, bend: ComponentSpec = 'bend_s') Component[source]#

Chain of splitters.

Parameters:
  • splitter – splitter to chain.

  • columns – number of splitters to chain.

  • bend – bend to connect splitters.

           __o5
        __|
     __|  |__o4
o1 _|  |__o3
    |__o2

     __o2
o1 _|
    |__o3
import gdsfactory as gf

c = gf.components.splitter_chain(splitter='mmi1x2', columns=3, bend='bend_s').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-16.png
gdsfactory.components.containers.splitter_tree(coupler: ComponentSpec = 'mmi1x2', noutputs: int = 4, spacing: Float2 = (90.0, 50.0), bend_s: ComponentSpec | None = 'bend_s', bend_s_xsize: float | None = None, cross_section: CrossSectionSpec = 'strip') gf.Component[source]#

Tree of power splitters.

Parameters:
  • coupler – coupler factory.

  • noutputs – number of outputs.

  • spacing – x, y spacing between couplers.

  • bend_s – Sbend function for termination.

  • bend_s_xsize – xsize for the sbend.

  • cross_section – cross_section.

     __|
  __|  |__
_|  |__
 |__        dy

  dx
import gdsfactory as gf

c = gf.components.splitter_tree(coupler='mmi1x2', noutputs=4, spacing=(90, 50), bend_s='bend_s', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-17.png
gdsfactory.components.containers.switch_tree(*, coupler: ComponentSpec = functools.partial(<function mzi>, combiner='mmi2x2', port_e1_combiner='o3', port_e0_combiner='o4', delta_length=0, straight_x_top='straight_heater_metal', length_x=None), noutputs: int = 4, spacing: Float2 = (500, 100), bend_s: ComponentSpec | None = 'bend_s', bend_s_xsize: float | None = None, cross_section: CrossSectionSpec = 'strip') gf.Component#

Tree of power splitters.

Parameters:
  • coupler – coupler factory.

  • noutputs – number of outputs.

  • spacing – x, y spacing between couplers.

  • bend_s – Sbend function for termination.

  • bend_s_xsize – xsize for the sbend.

  • cross_section – cross_section.

     __|
  __|  |__
_|  |__
 |__        dy

  dx
import gdsfactory as gf

c = gf.components.switch_tree(noutputs=4, spacing=(500, 100), bend_s='bend_s', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-18.png

couplers#

gdsfactory.components.couplers.coupler(gap: float = 0.236, length: float = 20.0, dy: float = 4.0, dx: float = 10.0, cross_section: CrossSectionSpec = 'strip', allow_min_radius_violation: bool = False, bend: ComponentSpec = 'bend_s') Component[source]#

Symmetric coupler.

Parameters:
  • gap – between straights in um.

  • length – of coupling region in um.

  • dy – port to port vertical spacing in um.

  • dx – length of bend in x direction in um.

  • cross_section – spec (CrossSection, string or dict).

  • allow_min_radius_violation – if True does not check for min bend radius.

  • bend – input and output sbend components.

      dx                                 dx
   |------|                           |------|
o2 ________                           ______o3
           \                         /           |
            \        length         /            |
             ======================= gap         | dy
            /                       \            |
   ________/                         \_______    |
o1                                          o4

               coupler_straight  coupler_symmetric
import gdsfactory as gf

c = gf.components.coupler(gap=0.236, length=20, dy=4, dx=10, cross_section='strip', allow_min_radius_violation=False, bend='bend_s').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-19.png
gdsfactory.components.couplers.coupler90(gap: float = 0.2, radius: float | None = None, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', cross_section: CrossSectionSpec = 'strip', cross_section_bend: CrossSectionSpec | None = None) Component[source]#

Straight coupled to a bend.

Parameters:
  • gap – um.

  • radius – um.

  • straight – for straight.

  • bend – bend spec.

  • cross_section – cross_section spec.

  • cross_section_bend – optional bend cross_section spec.

     o3
      |
     /
    /
o2_/
o1___o4
import gdsfactory as gf

c = gf.components.coupler90(gap=0.2, bend='bend_euler', straight='straight', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-20.png
gdsfactory.components.couplers.coupler90bend(radius: float = 10.0, gap: float = 0.2, bend: ComponentSpec = 'bend_euler', cross_section_inner: CrossSectionSpec = 'strip', cross_section_outer: CrossSectionSpec = 'strip') Component[source]#

Returns 2 coupled bends.

Parameters:
  • radius – um.

  • gap – um.

  • bend – for bend.

  • cross_section_inner – spec inner bend.

  • cross_section_outer – spec outer bend.

    r   3 4
    |   | |
    |  / /
    | / /
2____/ /
1_____/
import gdsfactory as gf

c = gf.components.coupler90bend(radius=10, gap=0.2, bend='bend_euler', cross_section_inner='strip', cross_section_outer='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-21.png
gdsfactory.components.couplers.coupler90circular(gap: float = 0.2, radius: float | None = None, *, bend: ComponentSpec = 'bend_circular', straight: ComponentSpec = 'straight', cross_section: CrossSectionSpec = 'strip', cross_section_bend: CrossSectionSpec | None = None) Component#

Straight coupled to a bend.

Parameters:
  • gap – um.

  • radius – um.

  • straight – for straight.

  • bend – bend spec.

  • cross_section – cross_section spec.

  • cross_section_bend – optional bend cross_section spec.

     o3
      |
     /
    /
o2_/
o1___o4
import gdsfactory as gf

c = gf.components.coupler90circular(gap=0.2, bend='bend_circular', straight='straight', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-22.png
gdsfactory.components.couplers.coupler_adiabatic(length1: float = 20.0, length2: float = 50.0, length3: float = 30.0, wg_sep: float = 1.0, input_wg_sep: float = 3.0, output_wg_sep: float = 3.0, dw: float = 0.1, cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns 50/50 adiabatic coupler.

Design based on asymmetric adiabatic 3dB coupler designs, such as those. - https://doi.org/10.1364/CLEO.2010.CThAA2, - https://doi.org/10.1364/CLEO_SI.2017.SF1I.5 - https://doi.org/10.1364/CLEO_SI.2018.STh4B.4

input Bezier curves, with poles set to half of the x-length of the S-bend. 1. is the first half of input S-bend where input widths taper by +dw and -dw 2. is the second half of the S-bend straight with constant, unbalanced widths 3. is the region where the two asymmetric straights gradually come together 4. straights taper back to the original width at a fixed distance from one another 5. is the output S-bend straight.

Parameters:
  • length1 – region that gradually brings the two asymmetric straights together. In this region the straight widths gradually change to be different by dw.

  • length2 – coupling region, where asymmetric straights gradually become the same width.

  • length3 – output region where the two straights separate.

  • wg_sep – Distance between center-to-center in the coupling region (Region 2).

  • input_wg_sep – Separation of the two straights at the input, center-to-center.

  • output_wg_sep – Separation of the two straights at the output, center-to-center.

  • dw – Change in straight width. In Region 1, top arm tapers to width+dw/2.0, bottom taper to width-dw/2.0.

  • cross_section – cross_section spec.

import gdsfactory as gf

c = gf.components.coupler_adiabatic(length1=20, length2=50, length3=30, wg_sep=1, input_wg_sep=3, output_wg_sep=3, dw=0.1, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-23.png
gdsfactory.components.couplers.coupler_asymmetric(gap: float = 0.234, dy: float = 2.5, dx: float = 10.0, cross_section: CrossSectionSpec = 'strip') Component[source]#

Bend coupled to straight waveguide.

Parameters:
  • gap – um.

  • dy – port to port vertical spacing.

  • dx – bend length in x direction.

  • cross_section – spec.

               dx
            |-----|
             _____ o2
            /         |
      _____/          |
gap o1____________    |  dy
                   o3
import gdsfactory as gf

c = gf.components.coupler_asymmetric(gap=0.234, dy=2.5, dx=10, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-24.png
gdsfactory.components.couplers.coupler_bent(gap: float = 0.2, radius: float = 26, length: float = 8.6, width1: float = 0.4, width2: float = 0.4, length_straight: float = 10, cross_section: str = 'strip') Component[source]#

Returns Broadband SOI curved / straight directional coupler.

based on: https://doi.org/10.1038/s41598-017-07618-6.

Parameters:
  • gap – gap.

  • radius – radius coupling.

  • length – coupler_length.

  • width1 – width1.

  • width2 – width2.

  • length_straight – input and output straight length.

  • cross_section – cross_section.

import gdsfactory as gf

c = gf.components.coupler_bent(gap=0.2, radius=26, length=8.6, width1=0.4, width2=0.4, length_straight=10, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-25.png
gdsfactory.components.couplers.coupler_broadband(w_sc: float = 0.5, gap_sc: float = 0.2, w_top: float = 0.6, gap_pc: float = 0.3, legnth_taper: float = 1.0, bend: ComponentSpec = 'bend_euler', coupler_straight: ComponentSpec = 'coupler_straight', length_coupler_straight: float = 12.4, lenght_coupler_big_gap: float = 4.7, cross_section: CrossSectionSpec = 'strip', radius: float = 10.0) Component[source]#

Returns broadband coupler component.

https://docs.flexcompute.com/projects/tidy3d/en/latest/notebooks/BroadbandDirectionalCoupler.html proposed in Zeqin Lu, Han Yun, Yun Wang, Zhitian Chen, Fan Zhang, Nicolas A. F. Jaeger, and Lukas Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795-3808 (2015), DOI: 10.1364/OE.23.003795.

Parameters:
  • w_sc – width of waveguides in the symmetric coupler section.

  • gap_sc – gap size between the waveguides in the symmetric coupler section.

  • w_top – width of the top waveguide in the phase control section.

  • gap_pc – gap size in the phase control section.

  • legnth_taper – length of the tapers.

  • bend – bend factory.

  • coupler_straight – coupler_straight factory.

  • length_coupler_straight – optimal L_1 from the 3d fdtd analysis.

  • lenght_coupler_big_gap – optimal L_2 from the 3d fdtd analysis.

  • cross_section – cross_section of the waveguides.

  • radius – bend radius.

import gdsfactory as gf

c = gf.components.coupler_broadband(w_sc=0.5, gap_sc=0.2, w_top=0.6, gap_pc=0.3, legnth_taper=1, bend='bend_euler', coupler_straight='coupler_straight', length_coupler_straight=12.4, lenght_coupler_big_gap=4.7, cross_section='strip', radius=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-26.png
gdsfactory.components.couplers.coupler_full(coupling_length: float = 40.0, dx: float = 10.0, dy: float = 4.8, gap: float = 0.5, dw: float = 0.1, cross_section: CrossSectionSpec = 'strip', width: float | None = None) Component[source]#

Adiabatic Full coupler.

Design based on asymmetric adiabatic full coupler designs, such as the one reported in ‘Integrated Optic Adiabatic Devices on Silicon’ by Y. Shani, et al (IEEE Journal of Quantum Electronics, Vol. 27, No. 3 March 1991).

1. is the first half of the input S-bend straight where the input straights widths taper by +dw and -dw, 2. is the second half of the S-bend straight with constant, unbalanced widths, 3. is the coupling region where the straights from unbalanced widths to balanced widths to reverse polarity unbalanced widths, 4. is the fixed width straight that curves away from the coupling region, 5.is the final curve where the straights taper back to the regular width specified in the straight template.

Parameters:
  • coupling_length – Length of the coupling region in um.

  • dx – Length of the bend regions in um.

  • dy – Port-to-port distance between the bend regions in um.

  • gap – Distance between the two straights in um.

  • dw – delta width. Top arm tapers to width - dw, bottom to width + dw in um.

  • cross_section – cross-section spec.

  • width – width of the waveguide. If None, it will use the width of the cross_section.

import gdsfactory as gf

c = gf.components.coupler_full(coupling_length=40, dx=10, dy=4.8, gap=0.5, dw=0.1, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-27.png
gdsfactory.components.couplers.coupler_ring(gap: float = 0.2, radius: float = 5.0, length_x: float = 4.0, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', cross_section: CrossSectionSpec = 'strip', cross_section_bend: CrossSectionSpec | None = None, length_extension: float = 3) Component[source]#

Coupler for ring.

Parameters:
  • gap – spacing between parallel coupled straight waveguides.

  • radius – of the bends.

  • length_x – length of the parallel coupled straight waveguides.

  • bend – 90 degrees bend spec.

  • straight – straight spec.

  • cross_section – cross_section spec.

  • cross_section_bend – optional bend cross_section spec.

  • length_extension – for the ports.

  o2            o3
   |             |
    \           /
     \         /
   ---=========---
o1    length_x   o4
import gdsfactory as gf

c = gf.components.coupler_ring(gap=0.2, radius=5, length_x=4, bend='bend_euler', straight='straight', cross_section='strip', length_extension=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-28.png
gdsfactory.components.couplers.coupler_straight(length: float = 10.0, gap: float = 0.27, cross_section: CrossSectionSpec = 'strip') Component[source]#

Coupler_straight with two parallel straights.

Parameters:
  • length – of straight.

  • gap – between straights.

  • cross_section – specification (CrossSection, string or dict).

o2──────▲─────────o3
        │gap
o1──────▼─────────o4
import gdsfactory as gf

c = gf.components.coupler_straight(length=10, gap=0.27, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-29.png
gdsfactory.components.couplers.coupler_straight_asymmetric(length: float = 10.0, gap: float = 0.27, width_top: float = 0.5, width_bot: float = 1, cross_section: CrossSectionSpec = 'strip') Component[source]#

Coupler with two parallel straights of different widths.

Parameters:
  • length – of straight.

  • gap – between straights.

  • width_top – of top straight.

  • width_bot – of bottom straight.

  • cross_section – cross_section spec.

import gdsfactory as gf

c = gf.components.coupler_straight_asymmetric(length=10, gap=0.27, width_top=0.5, width_bot=1, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-30.png

detectors#

gdsfactory.components.detectors.ge_detector_straight_si_contacts(length: float = 40.0, cross_section: CrossSectionSpec = 'pn_ge_detector_si_contacts', via_stack: ComponentSpec = 'via_stack_slab_m3', via_stack_width: float = 10.0, via_stack_spacing: float = 5.0, via_stack_offset: float = 0.0, taper_length: float = 20.0, taper_width: float = 0.8, taper_cros_section: CrossSectionSpec = 'strip') Component[source]#

Returns a straight Ge on Si detector with silicon contacts.

There are no contacts on the Ge. These detectors could have lower dark current and sensitivity compared to those with contacts in the Ge. See Chen et al., “High-Responsivity Low-Voltage 28-Gb/s Ge p-i-n Photodetector With Silicon Contacts”, Journal of Lightwave Technology 33(4), 2015.

https://doi.org/10.1109/JLT.2014.2367134

Parameters:
  • length – pd length.

  • cross_section – for the waveguide.

  • via_stack – for the via_stacks. First element

  • via_stack_width – width of the via_stack.

  • via_stack_spacing – spacing between via_stacks.

  • via_stack_offset – with respect to the detector

  • taper_length – length of the taper.

  • taper_width – width of the taper.

  • taper_cros_section – cross_section of the taper.

import gdsfactory as gf

c = gf.components.ge_detector_straight_si_contacts(length=40, cross_section='pn_ge_detector_si_contacts', via_stack='via_stack_slab_m3', via_stack_width=10, via_stack_spacing=5, via_stack_offset=0, taper_length=20, taper_width=0.8, taper_cros_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-31.png

dies#

gdsfactory.components.dies.add_frame(component: ComponentSpec = 'rectangle', width: float = 10.0, spacing: float = 10.0, layer: LayerSpec = 'WG') Component[source]#

Returns component with a frame around it.

Parameters:
  • component – Component to frame.

  • width – of the frame.

  • spacing – of component to frame.

  • layer – frame layer.

import gdsfactory as gf

c = gf.components.add_frame(component='rectangle', width=10, spacing=10, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-32.png
gdsfactory.components.dies.align_wafer(width: float = 10.0, spacing: float = 10.0, cross_length: float = 80.0, layer: LayerSpec = 'WG', layer_cladding: tuple[int, int] | None = None, square_corner: str = 'bottom_left') Component[source]#

Returns cross inside a frame to align wafer.

Parameters:
  • width – in um.

  • spacing – in um.

  • cross_length – for the cross.

  • layer – for the cross.

  • layer_cladding – optional.

  • square_corner – bottom_left, bottom_right, top_right, top_left.

import gdsfactory as gf

c = gf.components.align_wafer(width=10, spacing=10, cross_length=80, layer='WG', square_corner='bottom_left').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-33.png
gdsfactory.components.dies.die(size: Size = (10000.0, 10000.0), street_width: float = 100.0, street_length: float = 1000.0, die_name: str | None = 'chip99', text_size: float = 100.0, text_location: str | Float2 = 'SW', layer: LayerSpec | None = 'FLOORPLAN', bbox_layer: LayerSpec | None = 'FLOORPLAN', text: ComponentSpec = 'text', draw_corners: bool = False) gf.Component[source]#

Returns die with optional markers marking the boundary of the die.

Parameters:
  • size – x, y dimensions of the die.

  • street_width – Width of the corner marks for die-sawing.

  • street_length – Length of the corner marks for die-sawing.

  • die_name – Label text. If None, no label is added.

  • text_size – Label text size.

  • text_location – {‘NW’, ‘N’, ‘NE’, ‘SW’, ‘S’, ‘SE’} or (x, y) coordinate.

  • layer – For street widths. None to not draw the street widths.

  • bbox_layer – optional bbox layer drawn bounding box around the die.

  • text – function use for generating text. Needs to accept text, size, layer.

  • draw_corners – True draws only corners. False draws a square die.

import gdsfactory as gf

c = gf.components.die(size=(10000, 10000), street_width=100, street_length=1000, die_name='chip99', text_size=100, text_location='SW', layer='FLOORPLAN', bbox_layer='FLOORPLAN', text='text', draw_corners=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-34.png
gdsfactory.components.dies.die_with_pads(size: tuple[float, float] = (11470.0, 4900.0), ngratings: int = 14, npads: int = 31, grating_pitch: float = 250.0, pad_pitch: float = 300.0, grating_coupler: str | Callable[[...], Component] | dict[str, Any] | KCell = 'grating_coupler_te', cross_section: CrossSection | str | dict[str, Any] | Callable[[...], CrossSection] | SymmetricalCrossSection = 'strip', pad: str | Callable[[...], Component] | dict[str, Any] | KCell = 'pad', layer_floorplan: tuple[int, int] | str | int | LayerEnum = 'FLOORPLAN', edge_to_pad_distance: float = 150.0, edge_to_grating_distance: float = 150.0, with_loopback: bool = True, loopback_radius: float | None = None) Component[source]#

A die with grating couplers and pads.

Parameters:
  • size – the size of the die, in um.

  • ngratings – the number of grating couplers.

  • npads – the number of pads.

  • grating_pitch – the pitch of the grating couplers, in um.

  • pad_pitch – the pitch of the pads, in um.

  • grating_coupler – the grating coupler component.

  • cross_section – the cross section.

  • pad – the pad component.

  • layer_floorplan – the layer of the floorplan.

  • edge_to_pad_distance – the distance from the edge to the pads, in um.

  • edge_to_grating_distance – the distance from the edge to the grating couplers, in um.

  • with_loopback – if True, adds a loopback between edge GCs. Only works for rotation = 90 for now.

  • loopback_radius – optional radius for loopback.

import gdsfactory as gf

c = gf.components.die_with_pads(size=(11470, 4900), ngratings=14, npads=31, grating_pitch=250, pad_pitch=300, grating_coupler='grating_coupler_te', cross_section='strip', pad='pad', layer_floorplan='FLOORPLAN', edge_to_pad_distance=150, edge_to_grating_distance=150, with_loopback=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-35.png
gdsfactory.components.dies.seal_ring(size: tuple[float, float] = (500, 500), seal: ComponentSpec = 'via_stack', width: float = 10, padding: float = 10.0, with_north: bool = True, with_south: bool = True, with_east: bool = True, with_west: bool = True) Component[source]#

Returns a continuous seal ring boundary at the chip/die.

Prevents cracks from spreading and shields when connected to ground.

Parameters:
  • size – of the seal.

  • seal – function for the seal.

  • width – of the seal.

  • padding – from component to seal.

  • with_north – includes seal.

  • with_south – includes seal.

  • with_east – includes seal.

  • with_west – includes seal.

import gdsfactory as gf

c = gf.components.seal_ring(size=(500, 500), seal='via_stack', width=10, padding=10, with_north=True, with_south=True, with_east=True, with_west=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-36.png
gdsfactory.components.dies.seal_ring_segmented(size: tuple[float, float] = (500, 500), length_segment: float = 10, width_segment: float = 3, spacing_segment: float = 2, corner: ComponentSpec = 'via_stack_corner45_extended', via_stack: ComponentSpec = 'via_stack_m1_mtop', with_north: bool = True, with_south: bool = True, with_east: bool = True, with_west: bool = True) Component[source]#

Segmented Seal ring.

Parameters:
  • size – of the seal ring.

  • length_segment – length of each segment.

  • width_segment – width of each segment.

  • spacing_segment – spacing between segments.

  • corner – corner component.

  • via_stack – via_stack component.

  • with_north – includes seal.

  • with_south – includes seal.

  • with_east – includes seal.

  • with_west – includes seal.

import gdsfactory as gf

c = gf.components.seal_ring_segmented(size=(500, 500), length_segment=10, width_segment=3, spacing_segment=2, corner='via_stack_corner45_extended', via_stack='via_stack_m1_mtop', with_north=True, with_south=True, with_east=True, with_west=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-37.png
gdsfactory.components.dies.wafer(reticle: ComponentSpec = 'die', cols: tuple[int, ...] = (2, 6, 6, 8, 8, 6, 6, 2), xspacing: float | None = None, yspacing: float | None = None, die_name_col_row: bool = False) Component[source]#

Returns complete wafer. Useful for mask aligner steps.

Parameters:
  • reticle – spec for each wafer reticle.

  • cols – how many columns per row.

  • xspacing – optional spacing, defaults to reticle.dxsize.

  • yspacing – optional spacing, defaults to reticle.dysize.

  • die_name_col_row – if True, die name is row_col, otherwise is a number

import gdsfactory as gf

c = gf.components.wafer(reticle='die', cols=(2, 6, 6, 8, 8, 6, 6, 2), die_name_col_row=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-38.png

edge_couplers#

gdsfactory.components.edge_couplers.edge_coupler_array(edge_coupler: ComponentSpec = 'edge_coupler_silicon', n: int = 5, pitch: float = 127.0, x_reflection: bool = False, text: ComponentSpec | None = 'text_rectangular', text_offset: Float2 = (10, 20), text_rotation: float = 0) Component[source]#

Fiber array edge coupler based on an inverse taper.

Each edge coupler adds a ruler for polishing.

Parameters:
  • edge_coupler – edge coupler spec.

  • n – number of channels.

  • pitch – Fiber pitch.

  • x_reflection – horizontal mirror.

  • text – text spec.

  • text_offset – from edge coupler.

  • text_rotation – text rotation in degrees.

import gdsfactory as gf

c = gf.components.edge_coupler_array(edge_coupler='edge_coupler_silicon', n=5, pitch=127, x_reflection=False, text='text_rectangular', text_offset=(10, 20), text_rotation=0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-39.png
gdsfactory.components.edge_couplers.edge_coupler_array_with_loopback(edge_coupler: ComponentSpec = 'edge_coupler_silicon', cross_section: CrossSectionSpec = 'strip', radius: float = 30, n: int = 8, pitch: float = 127.0, extension_length: float = 1.0, x_reflection: bool = False, text: ComponentSpec | None = 'text_rectangular', text_offset: Float2 = (0, 10), text_rotation: float = 0) Component[source]#

Fiber array edge coupler.

Parameters:
  • edge_coupler – edge coupler.

  • cross_section – spec.

  • radius – bend radius loopback (um).

  • n – number of channels.

  • pitch – Fiber pitch (um).

  • extension_length – in um.

  • x_reflection – horizontal mirror.

  • text – Optional text spec.

  • text_offset – x, y.

  • text_rotation – text rotation in degrees.

import gdsfactory as gf

c = gf.components.edge_coupler_array_with_loopback(edge_coupler='edge_coupler_silicon', cross_section='strip', radius=30, n=8, pitch=127, extension_length=1, x_reflection=False, text='text_rectangular', text_offset=(0, 10), text_rotation=0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-40.png
gdsfactory.components.edge_couplers.edge_coupler_silicon(length: float = 100, width1: float = 0.5, width2: float = 0.2, with_two_ports: bool = True, port_names: tuple[str, str] = ('o1', 'o2'), port_types: tuple[str, str] = ('optical', 'edge_coupler'), cross_section: CrossSectionSpec = 'strip') Component[source]#

Edge coupler for silicon photonics.

Parameters:
  • length – length of the taper.

  • width1 – width1 of the taper.

  • width2 – width2 of the taper.

  • with_two_ports – add two ports.

  • port_names – tuple with port names.

  • port_types – tuple with port types.

  • cross_section – cross_section spec.

import gdsfactory as gf

c = gf.components.edge_coupler_silicon(length=100, width1=0.5, width2=0.2, with_two_ports=True, port_names=('o1', 'o2'), port_types=('optical', 'edge_coupler'), cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-41.png

filters#

gdsfactory.components.filters.awg(arms: int = 10, outputs: int = 3, free_propagation_region_input_function: ComponentSpec = functools.partial(<function free_propagation_region>, inputs=1), free_propagation_region_output_function: ComponentSpec = functools.partial(<function free_propagation_region>, inputs=10, width1=10, width2=20.0), fpr_spacing: float = 50.0, arm_spacing: float = 1.0, cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns a basic Arrayed Waveguide grating.

To simulate you can use dnrobin/awg-python

Parameters:
  • arms – number of arms.

  • outputs – number of outputs.

  • free_propagation_region_input_function – for input.

  • free_propagation_region_output_function – for output.

  • fpr_spacing – x separation between input/output free propagation region.

  • arm_spacing – y separation between arms.

  • cross_section – cross_section function.

import gdsfactory as gf

c = gf.components.awg(arms=10, outputs=3, fpr_spacing=50, arm_spacing=1, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-42.png
gdsfactory.components.filters.dbr(w1: float = 0.45, w2: float = 0.55, l1: float = 0.159, l2: float = 0.159, n: int = 10, cross_section: CrossSectionSpec = 'strip', straight_length: float = 0.01) Component[source]#

Distributed Bragg Reflector.

Parameters:
  • w1 – thin width in um.

  • w2 – thick width in um.

  • l1 – thin length in um.

  • l2 – thick length in um.

  • n – number of periods.

  • cross_section – cross_section spec.

  • straight_length – length of the straight section between cutbacks.

   l1      l2
<-----><-------->
        _________
_______|

  w1       w2       ...  n times
_______
       |_________
import gdsfactory as gf

c = gf.components.dbr(w1=0.45, w2=0.55, l1=0.159, l2=0.159, n=10, cross_section='strip', straight_length=0.01).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-43.png
gdsfactory.components.filters.dbr_cell(w1: float = 0.45, w2: float = 0.55, l1: float = 0.159, l2: float = 0.159, cross_section: CrossSectionSpec = 'strip') Component[source]#

Distributed Bragg Reflector unit cell.

Parameters:
  • w1 – thin width in um.

  • l1 – thin length in um.

  • w2 – thick width in um.

  • l2 – thick length in um.

  • n – number of periods.

  • cross_section – cross_section spec.

   l1      l2
<-----><-------->
        _________
_______|

  w1       w2
_______
       |_________
import gdsfactory as gf

c = gf.components.dbr_cell(w1=0.45, w2=0.55, l1=0.159, l2=0.159, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-44.png
gdsfactory.components.filters.dbr_tapered(length: float = 10.0, period: float = 0.85, dc: float = 0.5, w1: float = 0.4, w2: float = 1.0, taper_length: float = 20.0, fins: bool = False, fin_size: tuple[float, float] = (0.2, 0.05), cross_section: CrossSectionSpec = 'strip') Component[source]#

Distributed Bragg Reflector Cell class.

Tapers the input straight to a periodic straight structure with varying width (1-D photonic crystal).

Parameters:
  • length – Length of the DBR region.

  • period – Period of the repeated unit.

  • dc – Duty cycle of the repeated unit (must be a float between 0 and 1.0).

  • w1 – thin section width. w1 = 0 corresponds to disconnected periodic blocks.

  • w2 – wide section width.

  • taper_length – between the input/output straight and the DBR region.

  • fins – If True, adds fins to the input/output straights.

  • fin_size – Specifies the x- and y-size of the fins. Defaults to 200 nm x 50 nm

  • cross_section – cross_section spec.

         period
<-----><-------->
        _________
_______|

  w1       w2       ...  n times
_______
       |_________
import gdsfactory as gf

c = gf.components.dbr_tapered(length=10, period=0.85, dc=0.5, w1=0.4, w2=1, taper_length=20, fins=False, fin_size=(0.2, 0.05), cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-45.png
gdsfactory.components.filters.fiber(core_diameter: float = 10, cladding_diameter: float = 125, layer_core: LayerSpec = 'WG', layer_cladding: LayerSpec = 'WGCLAD') Component[source]#

Returns a fiber.

Parameters:
  • core_diameter – in um.

  • cladding_diameter – in um.

  • layer_core – layer spec for fiber core.

  • layer_cladding – layer spec for fiber cladding.

import gdsfactory as gf

c = gf.components.fiber(core_diameter=10, cladding_diameter=125, layer_core='WG', layer_cladding='WGCLAD').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-46.png
gdsfactory.components.filters.fiber_array(n: int = 8, pitch: float = 127.0, core_diameter: float = 10, cladding_diameter: float = 125, layer_core: LayerSpec = 'WG', layer_cladding: LayerSpec = 'WGCLAD') Component[source]#

Returns a fiber array.

Parameters:
  • n – number of fibers.

  • pitch – spacing.

  • core_diameter – 10um.

  • cladding_diameter – in um.

  • layer_core – layer spec for fiber core.

  • layer_cladding – layer spec for fiber cladding.

 pitch
  <->
 _________
|         | lid
| o o o o |
|         | base
|_________|
   length
import gdsfactory as gf

c = gf.components.fiber_array(n=8, pitch=127, core_diameter=10, cladding_diameter=125, layer_core='WG', layer_cladding='WGCLAD').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-47.png
gdsfactory.components.filters.free_propagation_region(width1: float = 2.0, width2: float = 20.0, length: float = 20.0, wg_width: float = 0.5, inputs: int = 1, outputs: int = 10, cross_section: CrossSectionSpec = 'strip') Component[source]#

Free propagation region.

Parameters:
  • width1 – width of the input region.

  • width2 – width of the output region.

  • length – length of the free propagation region.

  • wg_width – waveguide width.

  • inputs – number of inputs.

  • outputs – number of outputs.

  • cross_section – cross_section function.

      length
      <-->
        /|
       / |
width1|  | width2
       \ |
        \|
import gdsfactory as gf

c = gf.components.free_propagation_region(width1=2, width2=20, length=20, wg_width=0.5, inputs=1, outputs=10, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-48.png
gdsfactory.components.filters.loop_mirror(component: ComponentSpec = 'mmi1x2', bend90: ComponentSpec = 'bend_euler', cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns Sagnac loop_mirror.

Parameters:
  • component – 1x2 splitter.

  • bend90 – 90 deg bend.

  • cross_section – cross_section settings.

import gdsfactory as gf

c = gf.components.loop_mirror(component='mmi1x2', bend90='bend_euler', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-49.png
gdsfactory.components.filters.mode_converter(gap: float = 0.3, length: float = 10, coupler_straight_asymmetric: ComponentSpec = 'coupler_straight_asymmetric', bend: ComponentSpec = functools.partial(<function bend_s>, size=(25, 3)), taper: ComponentSpec = 'taper', mm_width: float = 1.2, mc_mm_width: float = 1, sm_width: float = 0.5, taper_length: float = 25, cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns Mode converter from TE0 to TE1.

By matching the effective indices of two waveguides with different widths, light can couple from different transverse modes e.g. TE0 <-> TE1. https://doi.org/10.1109/JPHOT.2019.2941742

Parameters:
  • gap – directional coupler gap.

  • length – coupler length interaction.

  • coupler_straight_asymmetric – spec.

  • bend – spec.

  • taper – spec.

  • mm_width – input/output multimode waveguide width.

  • mc_mm_width – mode converter multimode waveguide width

  • sm_width – single mode waveguide width.

  • taper_length – taper length.

  • cross_section – cross_section spec.

o2 ---           --- o4
      \         /
       \       /
        -------
o1 -----=======----- o3
        |-----|
        length

= : multimode width
- : singlemode width
import gdsfactory as gf

c = gf.components.mode_converter(gap=0.3, length=10, coupler_straight_asymmetric='coupler_straight_asymmetric', taper='taper', mm_width=1.2, mc_mm_width=1, sm_width=0.5, taper_length=25, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-50.png
gdsfactory.components.filters.polarization_splitter_rotator(width_taper_in: tuple[float, float, float] = (0.54, 0.69, 0.83), length_taper_in: tuple[float, float] | tuple[float, float, float] = (4.0, 44.0), width_coupler: tuple[float, float] = (0.9, 0.404), length_coupler: float = 7.0, gap: float = 0.15, width_out: float = 0.54, length_out: float = 14.33, dy: float = 5.0, cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns polarization splitter rotator.

“Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires.” By D. Dai, and J. E. Bowers (Optics express vol 19, no. 11 pp. 10940-10949 (2011)).

Parameters:
  • width_taper_in – Three west widths of the input tapers in um.

  • length_taper_in – Two or three length of the bend regions in um.

  • width_coupler – Top and bottom widths of the coupling region in um.

  • length_coupler – Length of the coupling region in um.

  • gap – Distance between the coupler in um.

  • width_out – Width of the splitter region in um.

  • length_out – Length of the splitter region in um.

  • dy – Port-to-port distance between the splitter region in um.

  • cross_section – cross-section spec.

Notes

The length of third input taper is automatically determined if only two lengths are in arguments.

import gdsfactory as gf

c = gf.components.polarization_splitter_rotator(width_taper_in=(0.54, 0.69, 0.83), length_taper_in=(4, 44), width_coupler=(0.9, 0.404), length_coupler=7, gap=0.15, width_out=0.54, length_out=14.33, dy=5, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-51.png
gdsfactory.components.filters.terminator(length: float | None = 50, cross_section_input: CrossSectionSpec = <function strip>, cross_section_tip: CrossSectionSpec | None = None, tapered_width: float = 0.2, doping_layers: LayerSpecs = ('NPP', ), doping_offset: float = 1.0) gf.Component[source]#

Returns doped taper to terminate waveguides.

Parameters:
  • length – distance between input and narrow tapered end.

  • cross_section_input – input cross-section.

  • cross_section_tip – cross-section at the end of the termination.

  • tapered_width – width of the default cross-section at the end of the termination. Only used if cross_section_tip is not None.

  • doping_layers – doping layers to superimpose on the taper. Default N++.

  • doping_offset – offset of the doping layer beyond the bbox

import gdsfactory as gf

c = gf.components.terminator(length=50, tapered_width=0.2, doping_layers=('NPP',), doping_offset=1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-52.png

grating_couplers#

gdsfactory.components.grating_couplers.grating_coupler_array(grating_coupler: ComponentSpec = 'grating_coupler_elliptical', pitch: float = 127.0, n: int = 6, port_name: str = 'o1', rotation: int = -90, with_loopback: bool = False, cross_section: CrossSectionSpec = 'strip', straight_to_grating_spacing: float = 10.0, centered: bool = True, radius: float | None = None) Component[source]#

Array of grating couplers.

Parameters:
  • grating_coupler – ComponentSpec.

  • pitch – x spacing.

  • n – number of grating couplers.

  • port_name – port name.

  • rotation – rotation angle for each reference.

  • with_loopback – if True, adds a loopback between edge GCs. Only works for rotation = 90 for now.

  • cross_section – cross_section for the routing.

  • straight_to_grating_spacing – spacing between the last grating coupler and the loopback.

  • centered – if True, centers the array around the origin.

  • radius – optional radius for routing the loopback.

import gdsfactory as gf

c = gf.components.grating_coupler_array(grating_coupler='grating_coupler_elliptical', pitch=127, n=6, port_name='o1', rotation=-90, with_loopback=False, cross_section='strip', straight_to_grating_spacing=10, centered=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-53.png
gdsfactory.components.grating_couplers.grating_coupler_dual_pol(unit_cell: ComponentSpec = <function _unit_cell>, period_x: float = 0.58, period_y: float = 0.58, x_span: float = 11, y_span: float = 11, length_taper: float = 150.0, width_taper: float = 10.0, polarization: str = 'te', wavelength: float = 1.55, taper: ComponentSpec = 'taper', base_layer: LayerSpec = 'WG', cross_section: CrossSectionSpec = 'strip') Component[source]#

2 dimensional, dual polarization grating coupler.

Based on a photonic crystal with a unit cell that is usually an ellipse, a rectangle or a circle. # The default values are loosely based on Taillaert et al, # “A Compact Two-Dimensional Grating Coupler Used as a Polarization Splitter”, IEEE Phot. Techn. Lett. 15(9), 2003

Parameters:
  • unit_cell – component describing the unit cell of the photonic crystal.

  • period_x – spacing between unit cells in the x direction [um].

  • period_y – spacing between unit cells in the y direction [um].

  • x_span – full x span of the photonic crystal.

  • y_span – full y span of the photonic crystal.

  • length_taper – taper length [um].

  • width_taper – width of the taper at the grating coupler side [um].

  • polarization – polarization of the grating coupler.

  • wavelength – operation wavelength [um]

  • taper – function to generate the tapers.

  • base_layer – layer to draw over the whole photonic crystal (necessary if the unit cells are etched into a base layer).

  • cross_section – for the routing waveguides.

side view
              fiber

           /  /  /  /
          /  /  /  /

        _|-|_|-|_|-|___  --> unit_cells
           base_layer |
    o1  ______________|


top view

           -------------
       // | o   o   o  |
o1 __ //  | o   o   o  |
      \\  | o   o   o  |
       \\ | o   o   o  |
           -------------
           \\         //
            \\       //
                 |
                 o2
import gdsfactory as gf

c = gf.components.grating_coupler_dual_pol(period_x=0.58, period_y=0.58, x_span=11, y_span=11, length_taper=150, width_taper=10, polarization='te', wavelength=1.55, taper='taper', base_layer='WG', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-54.png
gdsfactory.components.grating_couplers.grating_coupler_elliptical(polarization: str = 'te', taper_length: float = 16.6, taper_angle: float = 40.0, wavelength: float = 1.554, fiber_angle: float = 15.0, grating_line_width: float = 0.343, neff: float = 2.638, nclad: float = 1.443, n_periods: int = 30, big_last_tooth: bool = False, layer_slab: LayerSpec | None = 'SLAB150', slab_xmin: float = -1.0, slab_offset: float = 2.0, spiked: bool = True, cross_section: CrossSectionSpec = 'strip') Component[source]#

Grating coupler with parametrization based on Lumerical FDTD simulation.

Parameters:
  • polarization – te or tm.

  • taper_length – taper length from input.

  • taper_angle – grating flare angle.

  • wavelength – grating transmission central wavelength (um).

  • fiber_angle – fibre angle in degrees determines ellipticity.

  • grating_line_width – in um.

  • neff – tooth effective index.

  • nclad – cladding effective index.

  • n_periods – number of periods.

  • big_last_tooth – adds a big_last_tooth.

  • layer_slab – layer that protects the slab under the grating.

  • slab_xmin – where 0 is at the start of the taper.

  • slab_offset – in um.

  • spiked – grating teeth have sharp spikes to avoid non-manhattan drc errors.

  • cross_section – specification (CrossSection, string or dict).

          fiber

       /  /  /  /
      /  /  /  /

    _|-|_|-|_|-|___ layer
       layer_slab |
o1  ______________|
import gdsfactory as gf

c = gf.components.grating_coupler_elliptical(polarization='te', taper_length=16.6, taper_angle=40, wavelength=1.554, fiber_angle=15, grating_line_width=0.343, neff=2.638, nclad=1.443, n_periods=30, big_last_tooth=False, layer_slab='SLAB150', slab_xmin=-1, slab_offset=2, spiked=True, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-55.png
gdsfactory.components.grating_couplers.grating_coupler_elliptical_arbitrary(gaps: Floats = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), widths: Floats = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), taper_length: float = 16.6, taper_angle: float = 60.0, wavelength: float = 1.554, fiber_angle: float = 15.0, nclad: float = 1.443, layer_slab: LayerSpec | None = 'SLAB150', layer_grating: LayerSpec | None = None, taper_to_slab_offset: float = -3.0, polarization: str = 'te', spiked: bool = True, bias_gap: float = 0, cross_section: CrossSectionSpec = 'strip') Component[source]#

Grating coupler with parametrization based on Lumerical FDTD simulation.

The ellipticity is derived from Lumerical knowledge base it depends on fiber_angle (degrees), neff, and nclad

Parameters:
  • gaps – list of gaps.

  • widths – list of widths.

  • taper_length – taper length from input.

  • taper_angle – grating flare angle.

  • wavelength – grating transmission central wavelength (um).

  • fiber_angle – fibre angle in degrees determines ellipticity.

  • nclad – cladding effective index to compute ellipticity.

  • layer_slab – Optional slab.

  • layer_grating – Optional layer for grating. by default None uses cross_section.layer. if different from cross_section.layer expands taper.

  • taper_to_slab_offset – 0 is where taper ends.

  • polarization – te or tm.

  • spiked – grating teeth have spikes to avoid drc errors.

  • bias_gap – etch gap (um). Positive bias increases gap and reduces width to keep period constant.

  • cross_section – cross_section spec for waveguide port.

https://en.wikipedia.org/wiki/Ellipse c = (a1 ** 2 - b1 ** 2) ** 0.5 e = (1 - (b1 / a1) ** 2) ** 0.5 print(e)

          fiber

       /  /  /  /
      /  /  /  /

    _|-|_|-|_|-|___ layer
       layer_slab |
o1  ______________|
import gdsfactory as gf

c = gf.components.grating_coupler_elliptical_arbitrary(gaps=(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), widths=(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), taper_length=16.6, taper_angle=60, wavelength=1.554, fiber_angle=15, nclad=1.443, layer_slab='SLAB150', taper_to_slab_offset=-3, polarization='te', spiked=True, bias_gap=0, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-56.png
gdsfactory.components.grating_couplers.grating_coupler_elliptical_lumerical(parameters: Floats = (-2.4298362615732447, 0.1, 0.48007023217536954, 0.1, 0.607397685752365, 0.1, 0.4498844003086115, 0.1, 0.4274116312627637, 0.1, 0.4757904248387285, 0.1, 0.5026649898504233, 0.10002922416240886, 0.5100366774007897, 0.1, 0.494399635363353, 0.1079599958465788, 0.47400592737426483, 0.14972685326277918, 0.43272750134545823, 0.1839530796530385, 0.3872023336708212, 0.2360175325711591, 0.36032212454768675, 0.24261846353500535, 0.35770350120764394, 0.2606637836858316, 0.3526104381544335, 0.24668202254540886, 0.3717488388788273, 0.22920754299702897, 0.37769616507688464, 0.2246528336925301, 0.3765437598650894, 0.22041773376471022, 0.38047596041838994, 0.21923601658169187, 0.3798873698864591, 0.21700438236445285, 0.38291698672245644, 0.21827768053295463, 0.3641322152037017, 0.23729077006065105, 0.3676834419346081, 0.24865079519725933, 0.34415050295044936, 0.2733570818755685, 0.3306230780901629, 0.27350446437732157), layer_slab: LayerSpec | None = 'SLAB150', taper_angle: float = 55, taper_length: float = 12.6, fiber_angle: float = 5, info: dict[str, Any] | None = None, bias_gap: float = 0, cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns a grating coupler from lumerical inverse design 3D optimization.

this is a wrapper of components.grating_coupler_elliptical_arbitrary https://support.lumerical.com/hc/en-us/articles/1500000306621 https://support.lumerical.com/hc/en-us/articles/360042800573

Here are the simulation settings used in lumerical

n_bg=1.44401 #Refractive index of the background material (cladding) wg=3.47668 # Refractive index of the waveguide material (core) lambda0=1550e-9 bandwidth = 0e-9 polarization = ‘TE’ wg_width=500e-9 # Waveguide width wg_height=220e-9 # Waveguide height etch_depth=80e-9 # etch depth theta_fib_mat = 5 # Angle of the fiber mode in material theta_taper=30 efficiency=0.55 # 5.2 dB

Parameters:
  • parameters – xinput, gap1, width1, gap2, width2 …

  • layer – for waveguide.

  • layer_slab – for slab.

  • taper_angle – in deg.

  • taper_length – in um.

  • fiber_angle – used to compute ellipticity.

  • info – optional simulation settings.

  • bias_gap – gap/trenches bias (um) to compensate for etching bias.

Keyword Arguments:
  • taper_length – taper length from input in um.

  • taper_angle – grating flare angle in degrees.

  • wavelength – grating transmission central wavelength (um).

  • fiber_angle – fibre angle in degrees determines ellipticity.

  • neff – tooth effective index.

  • nclad – cladding effective index.

  • polarization – te or tm.

  • spiked – grating teeth include sharp spikes to avoid non-manhattan drc errors.

  • cross_section – cross_section spec for waveguide port.

import gdsfactory as gf

c = gf.components.grating_coupler_elliptical_lumerical(parameters=(-2.43, 0.1, 0.48, 0.1, 0.607, 0.1, 0.45, 0.1, 0.427, 0.1, 0.476, 0.1, 0.503, 0.1, 0.51, 0.1, 0.494, 0.108, 0.474, 0.15, 0.433, 0.184, 0.387, 0.236, 0.36, 0.243, 0.358, 0.261, 0.353, 0.247, 0.372, 0.229, 0.378, 0.225, 0.377, 0.22, 0.38, 0.219, 0.38, 0.217, 0.383, 0.218, 0.364, 0.237, 0.368, 0.249, 0.344, 0.273, 0.331, 0.274), layer_slab='SLAB150', taper_angle=55, taper_length=12.6, fiber_angle=5, bias_gap=0, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-57.png
gdsfactory.components.grating_couplers.grating_coupler_elliptical_lumerical_etch70(parameters: Floats = (-2.4298362615732447, 0.1, 0.48007023217536954, 0.1, 0.607397685752365, 0.1, 0.4498844003086115, 0.1, 0.4274116312627637, 0.1, 0.4757904248387285, 0.1, 0.5026649898504233, 0.10002922416240886, 0.5100366774007897, 0.1, 0.494399635363353, 0.1079599958465788, 0.47400592737426483, 0.14972685326277918, 0.43272750134545823, 0.1839530796530385, 0.3872023336708212, 0.2360175325711591, 0.36032212454768675, 0.24261846353500535, 0.35770350120764394, 0.2606637836858316, 0.3526104381544335, 0.24668202254540886, 0.3717488388788273, 0.22920754299702897, 0.37769616507688464, 0.2246528336925301, 0.3765437598650894, 0.22041773376471022, 0.38047596041838994, 0.21923601658169187, 0.3798873698864591, 0.21700438236445285, 0.38291698672245644, 0.21827768053295463, 0.3641322152037017, 0.23729077006065105, 0.3676834419346081, 0.24865079519725933, 0.34415050295044936, 0.2733570818755685, 0.3306230780901629, 0.27350446437732157), layer_slab: LayerSpec | None = 'SLAB150', taper_angle: float = 55, taper_length: float = 12.6, fiber_angle: float = 5, *, info: dict[str, Any] | None = {'efficiency': 0.55, 'etch_depth': 0.08, 'fiber_angle': 5, 'gap_min': 0.1, 'link': 'https://support.lumerical.com/hc/en-us/articles/1500000306621', 'width_min': 0.1}, bias_gap: float = 0, cross_section: CrossSectionSpec = 'strip') Component#

Returns a grating coupler from lumerical inverse design 3D optimization.

this is a wrapper of components.grating_coupler_elliptical_arbitrary https://support.lumerical.com/hc/en-us/articles/1500000306621 https://support.lumerical.com/hc/en-us/articles/360042800573

Here are the simulation settings used in lumerical

n_bg=1.44401 #Refractive index of the background material (cladding) wg=3.47668 # Refractive index of the waveguide material (core) lambda0=1550e-9 bandwidth = 0e-9 polarization = ‘TE’ wg_width=500e-9 # Waveguide width wg_height=220e-9 # Waveguide height etch_depth=80e-9 # etch depth theta_fib_mat = 5 # Angle of the fiber mode in material theta_taper=30 efficiency=0.55 # 5.2 dB

Parameters:
  • parameters – xinput, gap1, width1, gap2, width2 …

  • layer – for waveguide.

  • layer_slab – for slab.

  • taper_angle – in deg.

  • taper_length – in um.

  • fiber_angle – used to compute ellipticity.

  • info – optional simulation settings.

  • bias_gap – gap/trenches bias (um) to compensate for etching bias.

Keyword Arguments:
  • taper_length – taper length from input in um.

  • taper_angle – grating flare angle in degrees.

  • wavelength – grating transmission central wavelength (um).

  • fiber_angle – fibre angle in degrees determines ellipticity.

  • neff – tooth effective index.

  • nclad – cladding effective index.

  • polarization – te or tm.

  • spiked – grating teeth include sharp spikes to avoid non-manhattan drc errors.

  • cross_section – cross_section spec for waveguide port.

import gdsfactory as gf

c = gf.components.grating_coupler_elliptical_lumerical_etch70(parameters=(-2.43, 0.1, 0.48, 0.1, 0.607, 0.1, 0.45, 0.1, 0.427, 0.1, 0.476, 0.1, 0.503, 0.1, 0.51, 0.1, 0.494, 0.108, 0.474, 0.15, 0.433, 0.184, 0.387, 0.236, 0.36, 0.243, 0.358, 0.261, 0.353, 0.247, 0.372, 0.229, 0.378, 0.225, 0.377, 0.22, 0.38, 0.219, 0.38, 0.217, 0.383, 0.218, 0.364, 0.237, 0.368, 0.249, 0.344, 0.273, 0.331, 0.274), layer_slab='SLAB150', taper_angle=55, taper_length=12.6, fiber_angle=5, bias_gap=0, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-58.png
gdsfactory.components.grating_couplers.grating_coupler_elliptical_trenches(polarization: str = 'te', taper_length: float = 16.6, taper_angle: float = 30.0, trenches_extra_angle: float = 9.0, wavelength: float = 1.53, fiber_angle: float = 15.0, grating_line_width: float = 0.343, neff: float = 2.638, ncladding: float = 1.443, layer_trench: LayerSpec = 'SHALLOW_ETCH', p_start: int = 26, n_periods: int = 30, end_straight_length: float = 0.2, taper: ComponentSpec = 'taper', cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns Grating coupler with defined trenches.

Some foundries define the grating coupler by a shallow etch step (trenches) Others define the slab that they keep (see grating_coupler_elliptical)

Parameters:
  • polarization – ‘te’ or ‘tm’.

  • taper_length – taper length from straight I/O.

  • taper_angle – grating flare angle.

  • trenches_extra_angle – extra angle for the trenches.

  • wavelength – grating transmission central wavelength.

  • fiber_angle – fibre polish angle in degrees.

  • grating_line_width – of the 220 ridge.

  • neff – tooth effective index.

  • ncladding – cladding index.

  • layer_trench – for the trench.

  • p_start – first tooth.

  • n_periods – number of grating teeth.

  • end_straight_length – at the end of straight.

  • taper – taper function.

  • cross_section – cross_section spec.

              fiber

           /  /  /  /
          /  /  /  /
        _|-|_|-|_|-|___
WG  o1  ______________|
import gdsfactory as gf

c = gf.components.grating_coupler_elliptical_trenches(polarization='te', taper_length=16.6, taper_angle=30, trenches_extra_angle=9, wavelength=1.53, fiber_angle=15, grating_line_width=0.343, neff=2.638, ncladding=1.443, layer_trench='SHALLOW_ETCH', p_start=26, n_periods=30, end_straight_length=0.2, taper='taper', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-59.png
gdsfactory.components.grating_couplers.grating_coupler_elliptical_uniform(n_periods: int = 20, period: float = 0.75, fill_factor: float = 0.5, **kwargs: Any) Component[source]#

Grating coupler with parametrization based on Lumerical FDTD simulation.

The ellipticity is derived from Lumerical knowledge base it depends on fiber_angle (degrees), neff, and nclad

Parameters:
  • n_periods – number of grating periods.

  • period – grating pitch in um.

  • fill_factor – ratio of grating width vs gap.

Keyword Arguments:
  • taper_length – taper length from input.

  • taper_angle – grating flare angle.

  • wavelength – grating transmission central wavelength (um).

  • fiber_angle – fibre angle in degrees determines ellipticity.

  • neff – tooth effective index to compute ellipticity.

  • nclad – cladding effective index to compute ellipticity.

  • layer_slab – Optional slab.

  • taper_to_slab_offset – where 0 is at the start of the taper.

  • polarization – te or tm.

  • spiked – grating teeth have spikes to avoid drc errors..

  • bias_gap – etch gap (um). Positive bias increases gap and reduces width to keep period constant.

  • cross_section – cross_section spec for waveguide port.

  • kwargs – cross_section settings.

          fiber

       /  /  /  /
      /  /  /  /

    _|-|_|-|_|-|___ layer
       layer_slab |
o1  ______________|
import gdsfactory as gf

c = gf.components.grating_coupler_elliptical_uniform(n_periods=20, period=0.75, fill_factor=0.5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-60.png
gdsfactory.components.grating_couplers.grating_coupler_loss(pitch: float = 127.0, grating_coupler: ComponentSpec = 'grating_coupler_elliptical_trenches', cross_section: CrossSectionSpec = 'strip', port_name: str = 'o1', rotation: float = -90, nfibers: int = 10) Component[source]#

Grating coupler test structure for de-embeding fiber array.

Connects channel 1->3, 1->5 … 1->nfibers with grating couplers.

Only odd channels are connected to the grating couplers as even channels in the align_tree.

Parameters:
  • pitch – um.

  • grating_coupler – spec.

  • cross_section – spec.

  • port_name – for the grating_coupler port.

  • rotation – degrees.

  • nfibers – number of fibers to connect.

import gdsfactory as gf

c = gf.components.grating_coupler_loss(pitch=127, grating_coupler='grating_coupler_elliptical_trenches', cross_section='strip', port_name='o1', rotation=-90, nfibers=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-61.png
gdsfactory.components.grating_couplers.grating_coupler_rectangular(n_periods: int = 20, period: float = 0.75, fill_factor: float = 0.5, width_grating: float = 11.0, length_taper: float = 150.0, polarization: str = 'te', wavelength: float = 1.55, taper: ComponentSpec = 'taper', layer_slab: LayerSpec | None = 'SLAB150', layer_grating: LayerSpec | None = None, fiber_angle: float = 15, slab_xmin: float = -1.0, slab_offset: float = 1.0, cross_section: CrossSectionSpec = 'strip') Component[source]#

Grating coupler with rectangular shapes (not elliptical).

Needs longer taper than elliptical. Grating teeth are straight. For a focusing grating take a look at grating_coupler_elliptical.

Parameters:
  • n_periods – number of grating teeth.

  • period – grating pitch.

  • fill_factor – ratio of grating width vs gap.

  • width_grating

  • length_taper

  • polarization – ‘te’ or ‘tm’.

  • wavelength – in um.

  • taper – function.

  • layer_slab – layer that protects the slab under the grating.

  • layer_grating – layer for the grating.

  • fiber_angle – in degrees.

  • slab_xmin – where 0 is at the start of the taper.

  • slab_offset – from edge of grating to edge of the slab.

  • cross_section – for input waveguide port.

side view
              fiber

           /  /  /  /
          /  /  /  /

        _|-|_|-|_|-|___ layer
           layer_slab |
    o1  ______________|


top view     _________
            /| | | | |
           / | | | | |
          /taper_angle
         /_ _| | | | |
wg_width |   | | | | |
         \   | | | | |
          \  | | | | |
           \ | | | | |
            \|_|_|_|_|
         <-->
        taper_length
import gdsfactory as gf

c = gf.components.grating_coupler_rectangular(n_periods=20, period=0.75, fill_factor=0.5, width_grating=11, length_taper=150, polarization='te', wavelength=1.55, taper='taper', layer_slab='SLAB150', fiber_angle=15, slab_xmin=-1, slab_offset=1, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-62.png
gdsfactory.components.grating_couplers.grating_coupler_rectangular_arbitrary(gaps: Floats = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2), widths: Floats = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), width_grating: float = 11.0, length_taper: float = 150.0, polarization: str = 'te', wavelength: float = 1.55, layer_grating: LayerSpec | None = None, layer_slab: LayerSpec | None = None, slab_xmin: float = -1.0, slab_offset: float = 1.0, fiber_angle: float = 15, cross_section: CrossSectionSpec = 'strip') Component[source]#

Grating coupler uniform with rectangular shape (not elliptical).

Therefore it needs a longer taper. Grating teeth are straight instead of elliptical.

Parameters:
  • gaps – list of gaps between grating teeth.

  • widths – list of grating widths.

  • width_grating – grating teeth width.

  • length_taper – taper length (um).

  • polarization – ‘te’ or ‘tm’.

  • wavelength – in um.

  • layer_grating – Optional layer for grating. by default None uses cross_section.layer. if different from cross_section.layer expands taper.

  • layer_slab – layer that protects the slab under the grating.

  • slab_xmin – where 0 is at the start of the taper.

  • slab_offset – from edge of grating to edge of the slab.

  • fiber_angle – in degrees.

  • cross_section – for input waveguide port.

              fiber

           /  /  /  /
          /  /  /  /

        _|-|_|-|_|-|___ layer
           layer_slab |
    o1  ______________|



top view     _________
            /| | | | |
           / | | | | |
          /taper_angle
         /_ _| | | | |
wg_width |   | | | | |
         \   | | | | |
          \  | | | | |
           \ | | | | |
            \|_|_|_|_|
         <-->
        taper_length
import gdsfactory as gf

c = gf.components.grating_coupler_rectangular_arbitrary(gaps=(0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2), widths=(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), width_grating=11, length_taper=150, polarization='te', wavelength=1.55, slab_xmin=-1, slab_offset=1, fiber_angle=15, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-63.png
gdsfactory.components.grating_couplers.grating_coupler_tree(n: int = 4, straight_spacing: float = 4.0, grating_coupler: ComponentSpec = 'grating_coupler_elliptical_te', with_loopback: bool = False, bend: ComponentSpec = 'bend_euler', fanout_length: float = 0.0, cross_section: CrossSectionSpec = 'strip', **kwargs: Any) Component[source]#

Array of straights connected with grating couplers.

useful to align the 4 corners of the chip

Parameters:
  • n – number of gratings.

  • straight_spacing – in um.

  • grating_coupler – spec.

  • with_loopback – adds loopback.

  • bend – bend spec.

  • fanout_length – in um.

  • cross_section – cross_section function.

  • kwargs – additional arguments.

import gdsfactory as gf

c = gf.components.grating_coupler_tree(n=4, straight_spacing=4, grating_coupler='grating_coupler_elliptical_te', with_loopback=False, bend='bend_euler', fanout_length=0, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-64.png

mmis#

gdsfactory.components.mmis.mmi(inputs: int = 1, outputs: int = 4, width: float | None = None, width_taper: float = 1.0, length_taper: float = 10.0, length_mmi: float = 5.5, width_mmi: float = 5, gap_input_tapers: float = 0.25, gap_output_tapers: float = 0.25, taper: ComponentSpec = 'taper', straight: ComponentSpec = 'straight', cross_section: CrossSectionSpec = 'strip', input_positions: list[float] | None = None, output_positions: list[float] | None = None) Component[source]#

Mxn MultiMode Interferometer (MMI).

Parameters:
  • inputs – number of inputs.

  • outputs – number of outputs.

  • width – input and output straight width. Defaults to cross_section.

  • width_taper – interface between input straights and mmi region.

  • length_taper – into the mmi region.

  • length_mmi – in x direction.

  • width_mmi – in y direction.

  • gap_input_tapers – gap between input tapers from edge to edge.

  • gap_output_tapers – gap between output tapers from edge to edge.

  • taper – taper function.

  • straight – straight function.

  • cross_section – specification (CrossSection, string or dict).

  • input_positions – optional positions of the inputs.

  • output_positions – optional positions of the outputs.

       length_mmi
        <------>
        ________
       |        |
    __/          \__
o2  __            __  o3
      \          /_ _ _ _
      |         | _ _ _ _| gap_output_tapers
    __/          \__
o1  __            __  o4
      \          /
       |________|
     | |
     <->
length_taper
import gdsfactory as gf

c = gf.components.mmi(inputs=1, outputs=4, width_taper=1, length_taper=10, length_mmi=5.5, width_mmi=5, gap_input_tapers=0.25, gap_output_tapers=0.25, taper='taper', straight='straight', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-65.png
gdsfactory.components.mmis.mmi1x2(width: float | None = None, width_taper: float = 1.0, length_taper: float = 10.0, length_mmi: float = 5.5, width_mmi: float = 2.5, gap_mmi: float = 0.25, taper: ComponentSpec = <function taper>, straight: ComponentSpec = <function straight>, cross_section: CrossSectionSpec = 'strip') Component[source]#

1x2 MultiMode Interferometer (MMI).

Parameters:
  • width – input and output straight width. Defaults to cross_section width.

  • width_taper – interface between input straights and mmi region.

  • length_taper – into the mmi region.

  • length_mmi – in x direction.

  • width_mmi – in y direction.

  • gap_mmi – gap between tapered wg.

  • taper – taper function.

  • straight – straight function.

  • cross_section – specification (CrossSection, string or dict).

       length_mmi
        <------>
        ________
       |        |
       |         \__
       |          __  o2
    __/          /_ _ _ _
 o1 __          | _ _ _ _| gap_mmi
      \          \__
       |          __  o3
       |         /
       |________|

     <->
length_taper
import gdsfactory as gf

c = gf.components.mmi1x2(width_taper=1, length_taper=10, length_mmi=5.5, width_mmi=2.5, gap_mmi=0.25, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-66.png
gdsfactory.components.mmis.mmi1x2_with_sbend(with_sbend: bool = True, s_bend: ~collections.abc.Callable[[...], ~gdsfactory.component.Component] = <function bend_s>, cross_section: ~gdsfactory.cross_section.CrossSection | str | dict[str, ~typing.Any] | ~collections.abc.Callable[[...], ~gdsfactory.cross_section.CrossSection] | ~kfactory.cross_section.SymmetricalCrossSection = 'strip') Component[source]#

Returns 1x2 splitter for Cband.

https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-1-1310&id=248418

Parameters:
  • with_sbend – add sbend.

  • s_bend – S-bend spec.

  • cross_section – spec.

import gdsfactory as gf

c = gf.components.mmi1x2_with_sbend(with_sbend=True, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-67.png
gdsfactory.components.mmis.mmi2x2(width: float | None = None, width_taper: float = 1.0, length_taper: float = 10.0, length_mmi: float = 5.5, width_mmi: float = 2.5, gap_mmi: float = 0.25, taper: ComponentSpec = <function taper>, straight: ComponentSpec = <function straight>, cross_section: CrossSectionSpec = 'strip') Component[source]#

Mmi 2x2.

Parameters:
  • width – input and output straight width.

  • width_taper – interface between input straights and mmi region.

  • length_taper – into the mmi region.

  • length_mmi – in x direction.

  • width_mmi – in y direction.

  • gap_mmi – (width_taper + gap between tapered wg)/2.

  • taper – taper function.

  • straight – straight function.

  • cross_section – spec.

       length_mmi
        <------>
        ________
       |        |
    __/          \__
o2  __            __  o3
      \          /_ _ _ _
      |         | _ _ _ _| gap_mmi
    __/          \__
o1  __            __  o4
      \          /
       |________|

     <->
length_taper
import gdsfactory as gf

c = gf.components.mmi2x2(width_taper=1, length_taper=10, length_mmi=5.5, width_mmi=2.5, gap_mmi=0.25, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-68.png
gdsfactory.components.mmis.mmi2x2_with_sbend(with_sbend: bool = True, s_bend: ~collections.abc.Callable[[...], ~gdsfactory.component.Component] = <function bend_s>, cross_section: ~gdsfactory.cross_section.CrossSection | str | dict[str, ~typing.Any] | ~collections.abc.Callable[[...], ~gdsfactory.cross_section.CrossSection] | ~kfactory.cross_section.SymmetricalCrossSection = 'strip') Component[source]#

Returns mmi2x2 for Cband.

C_band 2x2MMI in 220nm thick silicon https://opg.optica.org/oe/fulltext.cfm?uri=oe-25-23-28957&id=376719

Parameters:
  • with_sbend – add sbend.

  • s_bend – S-bend function.

  • cross_section – spec.

import gdsfactory as gf

c = gf.components.mmi2x2_with_sbend(with_sbend=True, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-69.png
gdsfactory.components.mmis.mmi_90degree_hybrid(width: float = 0.5, width_taper: float = 1.7, length_taper: float = 40.0, length_mmi: float = 175.0, width_mmi: float = 10.0, gap_mmi: float = 0.8, straight: ComponentSpec = 'straight', cross_section: CrossSectionSpec = 'strip') Component[source]#

90 degree hybrid based on a 4x4 MMI.

Default values from Watanabe et al., “Coherent few mode demultiplexer realized as a 2D grating coupler array in silicon”, Optics Express 28(24), 2020

It could be interesting to consider the design in Guan et al., “Compact and low loss 90° optical hybrid on a silicon-on-insulator platform”, Optics Express 25(23), 2017

Parameters:
  • width – input and output straight width.

  • width_taper – interface between input straights and mmi region.

  • length_taper – into the mmi region.

  • length_mmi – in x direction.

  • width_mmi – in y direction.

  • gap_mmi – (width_taper + gap between tapered wg)/2.

  • straight – straight function.

  • with_bbox – box in bbox_layers and bbox_offsets avoid DRC sharp edges.

  • cross_section – spec.

              length_mmi
               <------>
               ________
              |        |
           __/          \__
signal_in  __            __  I_out1
             \          /_ _ _ _
             |         | _ _ _ _| gap_mmi
             |          \__
             |           __  Q_out1
             |          /
             |        |
             |
           __/          \__
   LO_in   __            __  Q_out2
             \          /_ _ _ _
             |         | _ _ _ _| gap_mmi
             |          \__
             |           __  I_out2
             |          /
             | ________|


            <->
       length_taper
import gdsfactory as gf

c = gf.components.mmi_90degree_hybrid(width=0.5, width_taper=1.7, length_taper=40, length_mmi=175, width_mmi=10, gap_mmi=0.8, straight='straight', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-70.png
gdsfactory.components.mmis.mmi_tapered(inputs: int = 1, outputs: int = 2, width: float | None = None, width_taper_in: float = 2.0, length_taper_in: float = 1.0, width_taper_out: float | None = None, length_taper_out: float | None = None, width_taper: float = 1.0, length_taper: float = 10.0, length_mmi: float = 5.5, width_mmi: float = 5, width_mmi_inner: float | None = None, gap_input_tapers: float = 0.25, gap_output_tapers: float = 0.25, taper: ComponentFactory = <function taper>, cross_section: CrossSectionSpec = 'strip', input_positions: list[float] | None = None, output_positions: list[float] | None = None) Component[source]#

Mxn MultiMode Interferometer (MMI).

This is jut a more general version of the mmi component. Make sure you simulate and optimize the component before using it.

Parameters:
  • inputs – number of inputs.

  • outputs – number of outputs.

  • width – input and output straight width. Defaults to cross_section.

  • width_taper_in – interface between input straights and mmi region.

  • length_taper_in – into the mmi region.

  • width_taper_out – interface between mmi region and output straights.

  • length_taper_out – into the mmi region.

  • width_taper – interface between mmi region and output straights.

  • length_taper – into the mmi region.

  • length_mmi – in x direction.

  • width_mmi – in y direction.

  • width_mmi_inner – allows adding a different width for the inner mmi region.

  • gap_input_tapers – gap between input tapers from edge to edge.

  • gap_output_tapers – gap between output tapers from edge to edge.

  • taper – taper function.

  • cross_section – specification (CrossSection, string or dict).

  • input_positions – optional positions of the inputs.

  • output_positions – optional positions of the outputs.

                                                                            ◄──────────────────►
                               ┌───────────────────────────────────────────┐
                               │                                           ├───────────────────┐
                               │                                           │                   ├─────────────┐
                               │                                           │                   │             │
                               │                                           │                   │             │
       width_taper             │                                           │                   │             │
            ▲ ┌────────────────┤                                           │                   ├─────────────┘
            │ │                │                                           ├───────────────────┘
┌───────────┼─┤                │                                           │
│           │ │◄──────────────►│                                           │
◄───────────┼─►                │                                           ├───────────────────┐
└───────────┼─┐                │                                           │                   ├──────────────┐
length_taper│ │                │                                           │                   │              │
            ▼ └────────────────┤                                           │                   │              │
                               │                                           │                   │              │
              ◄───────────────►│                                           │                   ├──────────────┘
                length_taper_in│                                           ├───────────────────┘
                               └───────────────────────────────────────────┘
                                                                             length_taper_out   length_taper
                               ◄───────────────────────────────────────────►
                                             length_mmi
import gdsfactory as gf

c = gf.components.mmi_tapered(inputs=1, outputs=2, width_taper_in=2, length_taper_in=1, width_taper=1, length_taper=10, length_mmi=5.5, width_mmi=5, gap_input_tapers=0.25, gap_output_tapers=0.25, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-71.png

mzis#

gdsfactory.components.mzis.mzi(delta_length: float = 10.0, length_y: float = 2.0, length_x: float | None = 0.1, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_y: ComponentSpec | None = None, straight_x_top: ComponentSpec | None = None, straight_x_bot: ComponentSpec | None = None, splitter: ComponentSpec = 'mmi1x2', combiner: ComponentSpec | None = None, with_splitter: bool = True, port_e1_splitter: str = 'o2', port_e0_splitter: str = 'o3', port_e1_combiner: str = 'o2', port_e0_combiner: str = 'o3', port1: str = 'o1', port2: str = 'o2', nbends: int = 2, cross_section: CrossSectionSpec = 'strip', cross_section_x_top: CrossSectionSpec | None = None, cross_section_x_bot: CrossSectionSpec | None = None, mirror_bot: bool = False, add_optical_ports_arms: bool = False, min_length: float = 0.01, auto_rename_ports: bool = True) Component[source]#

Mzi.

Parameters:
  • delta_length – bottom arm vertical extra length.

  • length_y – vertical length for both and top arms.

  • length_x – horizontal length. None uses to the straight_x_bot/top defaults.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • splitter – splitter function.

  • combiner – combiner function.

  • with_splitter – if False removes splitter.

  • port_e1_splitter – east top splitter port.

  • port_e0_splitter – east bot splitter port.

  • port_e1_combiner – east top combiner port.

  • port_e0_combiner – east bot combiner port.

  • port1 – input port name.

  • port2 – output port name.

  • nbends – from straight top/bot to combiner (at least 2).

  • cross_section – for routing (sxtop/sxbot to combiner).

  • cross_section_x_top – optional top cross_section (defaults to cross_section).

  • cross_section_x_bot – optional bottom cross_section (defaults to cross_section).

  • mirror_bot – if true, mirrors the bottom arm.

  • add_optical_ports_arms – add all other optical ports in the arms with top_ and bot_ prefix.

  • min_length – minimum length for the straight.

  • auto_rename_ports – if True, renames ports.

               b2______b3
              |  sxtop  |
      straight_y        |
              |         |
              b1        b4
    splitter==|         |==combiner
              b5        b8
              |         |
      straight_y        |
              |         |
delta_length/2          |
              |         |
             b6__sxbot__b7
                  Lx
import gdsfactory as gf

c = gf.components.mzi(delta_length=10, length_y=2, length_x=0.1, bend='bend_euler', straight='straight', splitter='mmi1x2', with_splitter=True, port_e1_splitter='o2', port_e0_splitter='o3', port_e1_combiner='o2', port_e0_combiner='o3', port1='o1', port2='o2', nbends=2, cross_section='strip', mirror_bot=False, add_optical_ports_arms=False, min_length=0.01, auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-72.png
gdsfactory.components.mzis.mzi1x2_2x2(delta_length: float = 10.0, length_y: float = 2.0, length_x: float | None = 0.1, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_y: ComponentSpec | None = None, straight_x_top: ComponentSpec | None = None, straight_x_bot: ComponentSpec | None = None, splitter: ComponentSpec = 'mmi1x2', *, combiner: ComponentSpec | None = 'mmi2x2', with_splitter: bool = True, port_e1_splitter: str = 'o2', port_e0_splitter: str = 'o3', port_e1_combiner: str = 'o3', port_e0_combiner: str = 'o4', port1: str = 'o1', port2: str = 'o2', nbends: int = 2, cross_section: CrossSectionSpec = 'strip', cross_section_x_top: CrossSectionSpec | None = None, cross_section_x_bot: CrossSectionSpec | None = None, mirror_bot: bool = False, add_optical_ports_arms: bool = False, min_length: float = 0.01, auto_rename_ports: bool = True) Component#

Mzi.

Parameters:
  • delta_length – bottom arm vertical extra length.

  • length_y – vertical length for both and top arms.

  • length_x – horizontal length. None uses to the straight_x_bot/top defaults.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • splitter – splitter function.

  • combiner – combiner function.

  • with_splitter – if False removes splitter.

  • port_e1_splitter – east top splitter port.

  • port_e0_splitter – east bot splitter port.

  • port_e1_combiner – east top combiner port.

  • port_e0_combiner – east bot combiner port.

  • port1 – input port name.

  • port2 – output port name.

  • nbends – from straight top/bot to combiner (at least 2).

  • cross_section – for routing (sxtop/sxbot to combiner).

  • cross_section_x_top – optional top cross_section (defaults to cross_section).

  • cross_section_x_bot – optional bottom cross_section (defaults to cross_section).

  • mirror_bot – if true, mirrors the bottom arm.

  • add_optical_ports_arms – add all other optical ports in the arms with top_ and bot_ prefix.

  • min_length – minimum length for the straight.

  • auto_rename_ports – if True, renames ports.

               b2______b3
              |  sxtop  |
      straight_y        |
              |         |
              b1        b4
    splitter==|         |==combiner
              b5        b8
              |         |
      straight_y        |
              |         |
delta_length/2          |
              |         |
             b6__sxbot__b7
                  Lx
import gdsfactory as gf

c = gf.components.mzi1x2_2x2(delta_length=10, length_y=2, length_x=0.1, bend='bend_euler', straight='straight', splitter='mmi1x2', combiner='mmi2x2', with_splitter=True, port_e1_splitter='o2', port_e0_splitter='o3', port_e1_combiner='o3', port_e0_combiner='o4', port1='o1', port2='o2', nbends=2, cross_section='strip', mirror_bot=False, add_optical_ports_arms=False, min_length=0.01, auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-73.png
gdsfactory.components.mzis.mzi2x2_2x2_phase_shifter(delta_length: float = 10.0, length_y: float = 2.0, *, length_x: float | None = 200, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_y: ComponentSpec | None = None, straight_x_top: ComponentSpec | None = 'straight_heater_metal', straight_x_bot: ComponentSpec | None = None, splitter: ComponentSpec = 'mmi2x2', combiner: ComponentSpec | None = 'mmi2x2', with_splitter: bool = True, port_e1_splitter: str = 'o3', port_e0_splitter: str = 'o4', port_e1_combiner: str = 'o3', port_e0_combiner: str = 'o4', port1: str = 'o1', port2: str = 'o2', nbends: int = 2, cross_section: CrossSectionSpec = 'strip', cross_section_x_top: CrossSectionSpec | None = None, cross_section_x_bot: CrossSectionSpec | None = None, mirror_bot: bool = False, add_optical_ports_arms: bool = False, min_length: float = 0.01, auto_rename_ports: bool = True) Component#

Mzi.

Parameters:
  • delta_length – bottom arm vertical extra length.

  • length_y – vertical length for both and top arms.

  • length_x – horizontal length. None uses to the straight_x_bot/top defaults.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • splitter – splitter function.

  • combiner – combiner function.

  • with_splitter – if False removes splitter.

  • port_e1_splitter – east top splitter port.

  • port_e0_splitter – east bot splitter port.

  • port_e1_combiner – east top combiner port.

  • port_e0_combiner – east bot combiner port.

  • port1 – input port name.

  • port2 – output port name.

  • nbends – from straight top/bot to combiner (at least 2).

  • cross_section – for routing (sxtop/sxbot to combiner).

  • cross_section_x_top – optional top cross_section (defaults to cross_section).

  • cross_section_x_bot – optional bottom cross_section (defaults to cross_section).

  • mirror_bot – if true, mirrors the bottom arm.

  • add_optical_ports_arms – add all other optical ports in the arms with top_ and bot_ prefix.

  • min_length – minimum length for the straight.

  • auto_rename_ports – if True, renames ports.

               b2______b3
              |  sxtop  |
      straight_y        |
              |         |
              b1        b4
    splitter==|         |==combiner
              b5        b8
              |         |
      straight_y        |
              |         |
delta_length/2          |
              |         |
             b6__sxbot__b7
                  Lx
import gdsfactory as gf

c = gf.components.mzi2x2_2x2_phase_shifter(delta_length=10, length_y=2, length_x=200, bend='bend_euler', straight='straight', straight_x_top='straight_heater_metal', splitter='mmi2x2', combiner='mmi2x2', with_splitter=True, port_e1_splitter='o3', port_e0_splitter='o4', port_e1_combiner='o3', port_e0_combiner='o4', port1='o1', port2='o2', nbends=2, cross_section='strip', mirror_bot=False, add_optical_ports_arms=False, min_length=0.01, auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-74.png
gdsfactory.components.mzis.mzi_lattice(coupler_lengths: Sequence[float] = (10.0, 20.0), coupler_gaps: Sequence[float] = (0.2, 0.3), delta_lengths: Sequence[float] = (10.0,), mzi: str = 'mzi_coupler', splitter: str = 'coupler', **kwargs: Any) Component[source]#

Mzi lattice filter.

Parameters:
  • coupler_lengths – list of length for each coupler.

  • coupler_gaps – list of coupler gaps.

  • delta_lengths – list of length differences.

  • mzi – function for the mzi.

  • splitter – splitter function.

  • kwargs – additional settings.

Keyword Arguments:
  • length_y – vertical length for both and top arms.

  • length_x – horizontal length.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • cross_section – for routing (sxtop/sxbot to combiner).

      ______             ______
     |      |           |      |
     |      |           |      |
cp1==|      |===cp2=====|      |=== .... ===cp_last===
     |      |           |      |
     |      |           |      |
    DL1     |          DL2     |
     |      |           |      |
     |______|           |      |
                        |______|
import gdsfactory as gf

c = gf.components.mzi_lattice(coupler_lengths=(10, 20), coupler_gaps=(0.2, 0.3), delta_lengths=(10,), mzi='mzi_coupler', splitter='coupler').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-75.png
gdsfactory.components.mzis.mzi_lattice_mmi(coupler_widths: tuple[float | None, float | None] = (None, None), coupler_widths_tapers: tuple[float, ...] = (1.0, 1.0), coupler_lengths_tapers: tuple[float, ...] = (10.0, 10.0), coupler_lengths_mmis: tuple[float, ...] = (5.5, 5.5), coupler_widths_mmis: tuple[float, ...] = (2.5, 2.5), coupler_gaps_mmis: tuple[float, ...] = (0.25, 0.25), taper_functions_mmis: tuple[str, ...] = ('taper', 'taper'), straight_functions_mmis: tuple[str, ...] = ('straight', 'straight'), cross_sections_mmis: tuple[str, ...] = ('strip', 'strip'), delta_lengths: tuple[float, ...] = (10.0,), mzi: str = 'mzi2x2_2x2', splitter: str = 'mmi2x2', **kwargs: Any) Component[source]#

Mzi lattice filter, with MMI couplers.

Parameters:
  • coupler_widths – (for each MMI coupler, list of) input and output straight width.

  • coupler_widths_tapers – (for each MMI coupler, list of) interface between input straights and mmi region.

  • coupler_lengths_tapers – (for each MMI coupler, list of) into the mmi region.

  • coupler_lengths_mmis – (for each MMI coupler, list of) in x direction.

  • coupler_widths_mmis – (for each MMI coupler, list of) in y direction.

  • coupler_gaps_mmis – (for each MMI coupler, list of) (width_taper + gap between tapered wg)/2.

  • taper_functions_mmis – (for each MMI coupler, list of) taper function.

  • straight_functions_mmis – (for each MMI coupler, list of) straight function.

  • cross_sections_mmis – (for each MMI coupler, list of) spec.

  • delta_lengths – list of length differences.

  • mzi – function for the mzi.

  • splitter – splitter function.

  • kwargs – additional settings.

Keyword Arguments:
  • length_y – vertical length for both and top arms.

  • length_x – horizontal length.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • cross_section – for routing (sxtop/sxbot to combiner).

      ______             ______
     |      |           |      |
     |      |           |      |
cp1==|      |===cp2=====|      |=== .... ===cp_last===
     |      |           |      |
     |      |           |      |
    DL1     |          DL2     |
     |      |           |      |
     |______|           |      |
                        |______|
import gdsfactory as gf

c = gf.components.mzi_lattice_mmi(coupler_widths=(None, None), coupler_widths_tapers=(1, 1), coupler_lengths_tapers=(10, 10), coupler_lengths_mmis=(5.5, 5.5), coupler_widths_mmis=(2.5, 2.5), coupler_gaps_mmis=(0.25, 0.25), taper_functions_mmis=('taper', 'taper'), straight_functions_mmis=('straight', 'straight'), cross_sections_mmis=('strip', 'strip'), delta_lengths=(10,), mzi='mzi2x2_2x2', splitter='mmi2x2').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-76.png
gdsfactory.components.mzis.mzi_pads_center(ps_top: ComponentSpec = 'straight_heater_metal', ps_bot: ComponentSpec = 'straight_heater_metal', mzi: ComponentSpec = 'mzi', pad: ComponentSpec = 'pad_small', length_x: float = 500, length_y: float = 40, mzi_sig_top: str | None = 'top_r_e2', mzi_gnd_top: str | None = 'top_l_e2', mzi_sig_bot: str | None = 'bot_l_e2', mzi_gnd_bot: str | None = 'bot_r_e2', pad_sig_bot: str = 'e1_1_1', pad_sig_top: str = 'e3_1_3', pad_gnd_bot: str = 'e4_1_2', pad_gnd_top: str = 'e2_1_2', delta_length: float = 40.0, cross_section: CrossSectionSpec = 'strip', cross_section_metal: CrossSectionSpec = 'metal_routing', pad_pitch: float | str = 'pad_pitch', **kwargs: Any) Component[source]#

Return Mzi phase shifter with pads in the middle.

GND is the middle pad and is shared between top and bottom phase shifters.

Parameters:
  • ps_top – phase shifter top.

  • ps_bot – phase shifter bottom.

  • mzi – interferometer.

  • pad – pad function.

  • length_x – horizontal length.

  • length_y – vertical length.

  • mzi_sig_top – port name for top phase shifter signal. None if no connection.

  • mzi_gnd_top – port name for top phase shifter GND. None if no connection.

  • mzi_sig_bot – port name for top phase shifter signal. None if no connection.

  • mzi_gnd_bot – port name for top phase shifter GND. None if no connection.

  • pad_sig_bot – port name for top pad.

  • pad_sig_top – port name for top pad.

  • pad_gnd_bot – port name for top pad.

  • pad_gnd_top – port name for top pad.

  • delta_length – mzi length imbalance.

  • cross_section – for the mzi.

  • cross_section_metal – for routing metal.

  • pad_pitch – pad pitch in um.

  • kwargs – routing settings.

import gdsfactory as gf

c = gf.components.mzi_pads_center(ps_top='straight_heater_metal', ps_bot='straight_heater_metal', mzi='mzi', pad='pad_small', length_x=500, length_y=40, mzi_sig_top='top_r_e2', mzi_gnd_top='top_l_e2', mzi_sig_bot='bot_l_e2', mzi_gnd_bot='bot_r_e2', pad_sig_bot='e1_1_1', pad_sig_top='e3_1_3', pad_gnd_bot='e4_1_2', pad_gnd_top='e2_1_2', delta_length=40, cross_section='strip', cross_section_metal='metal_routing', pad_pitch='pad_pitch').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-77.png
gdsfactory.components.mzis.mzi_phase_shifter(delta_length: float = 10.0, length_y: float = 2.0, *, length_x: float | None = 200, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_y: ComponentSpec | None = None, straight_x_top: ComponentSpec | None = 'straight_heater_metal', straight_x_bot: ComponentSpec | None = None, splitter: ComponentSpec = 'mmi1x2', combiner: ComponentSpec | None = None, with_splitter: bool = True, port_e1_splitter: str = 'o2', port_e0_splitter: str = 'o3', port_e1_combiner: str = 'o2', port_e0_combiner: str = 'o3', port1: str = 'o1', port2: str = 'o2', nbends: int = 2, cross_section: CrossSectionSpec = 'strip', cross_section_x_top: CrossSectionSpec | None = None, cross_section_x_bot: CrossSectionSpec | None = None, mirror_bot: bool = False, add_optical_ports_arms: bool = False, min_length: float = 0.01, auto_rename_ports: bool = True) Component#

Mzi.

Parameters:
  • delta_length – bottom arm vertical extra length.

  • length_y – vertical length for both and top arms.

  • length_x – horizontal length. None uses to the straight_x_bot/top defaults.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • splitter – splitter function.

  • combiner – combiner function.

  • with_splitter – if False removes splitter.

  • port_e1_splitter – east top splitter port.

  • port_e0_splitter – east bot splitter port.

  • port_e1_combiner – east top combiner port.

  • port_e0_combiner – east bot combiner port.

  • port1 – input port name.

  • port2 – output port name.

  • nbends – from straight top/bot to combiner (at least 2).

  • cross_section – for routing (sxtop/sxbot to combiner).

  • cross_section_x_top – optional top cross_section (defaults to cross_section).

  • cross_section_x_bot – optional bottom cross_section (defaults to cross_section).

  • mirror_bot – if true, mirrors the bottom arm.

  • add_optical_ports_arms – add all other optical ports in the arms with top_ and bot_ prefix.

  • min_length – minimum length for the straight.

  • auto_rename_ports – if True, renames ports.

               b2______b3
              |  sxtop  |
      straight_y        |
              |         |
              b1        b4
    splitter==|         |==combiner
              b5        b8
              |         |
      straight_y        |
              |         |
delta_length/2          |
              |         |
             b6__sxbot__b7
                  Lx
import gdsfactory as gf

c = gf.components.mzi_phase_shifter(delta_length=10, length_y=2, length_x=200, bend='bend_euler', straight='straight', straight_x_top='straight_heater_metal', splitter='mmi1x2', with_splitter=True, port_e1_splitter='o2', port_e0_splitter='o3', port_e1_combiner='o2', port_e0_combiner='o3', port1='o1', port2='o2', nbends=2, cross_section='strip', mirror_bot=False, add_optical_ports_arms=False, min_length=0.01, auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-78.png
gdsfactory.components.mzis.mzi_phase_shifter_top_heater_metal(delta_length: float = 10.0, length_y: float = 2.0, *, length_x: float | None = 200, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_y: ComponentSpec | None = None, straight_x_top: ComponentSpec | None = 'straight_heater_metal', straight_x_bot: ComponentSpec | None = None, splitter: ComponentSpec = 'mmi1x2', combiner: ComponentSpec | None = None, with_splitter: bool = True, port_e1_splitter: str = 'o2', port_e0_splitter: str = 'o3', port_e1_combiner: str = 'o2', port_e0_combiner: str = 'o3', port1: str = 'o1', port2: str = 'o2', nbends: int = 2, cross_section: CrossSectionSpec = 'strip', cross_section_x_top: CrossSectionSpec | None = None, cross_section_x_bot: CrossSectionSpec | None = None, mirror_bot: bool = False, add_optical_ports_arms: bool = False, min_length: float = 0.01, auto_rename_ports: bool = True) Component#

Mzi.

Parameters:
  • delta_length – bottom arm vertical extra length.

  • length_y – vertical length for both and top arms.

  • length_x – horizontal length. None uses to the straight_x_bot/top defaults.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • splitter – splitter function.

  • combiner – combiner function.

  • with_splitter – if False removes splitter.

  • port_e1_splitter – east top splitter port.

  • port_e0_splitter – east bot splitter port.

  • port_e1_combiner – east top combiner port.

  • port_e0_combiner – east bot combiner port.

  • port1 – input port name.

  • port2 – output port name.

  • nbends – from straight top/bot to combiner (at least 2).

  • cross_section – for routing (sxtop/sxbot to combiner).

  • cross_section_x_top – optional top cross_section (defaults to cross_section).

  • cross_section_x_bot – optional bottom cross_section (defaults to cross_section).

  • mirror_bot – if true, mirrors the bottom arm.

  • add_optical_ports_arms – add all other optical ports in the arms with top_ and bot_ prefix.

  • min_length – minimum length for the straight.

  • auto_rename_ports – if True, renames ports.

               b2______b3
              |  sxtop  |
      straight_y        |
              |         |
              b1        b4
    splitter==|         |==combiner
              b5        b8
              |         |
      straight_y        |
              |         |
delta_length/2          |
              |         |
             b6__sxbot__b7
                  Lx
import gdsfactory as gf

c = gf.components.mzi_phase_shifter_top_heater_metal(delta_length=10, length_y=2, length_x=200, bend='bend_euler', straight='straight', straight_x_top='straight_heater_metal', splitter='mmi1x2', with_splitter=True, port_e1_splitter='o2', port_e0_splitter='o3', port_e1_combiner='o2', port_e0_combiner='o3', port1='o1', port2='o2', nbends=2, cross_section='strip', mirror_bot=False, add_optical_ports_arms=False, min_length=0.01, auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-79.png
gdsfactory.components.mzis.mzi_pin(*, delta_length: float = 0.0, length_y: float = 2.0, length_x: float | None = 100, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_y: ComponentSpec | None = None, straight_x_top: ComponentSpec | None = 'straight_pin', straight_x_bot: ComponentSpec | None = None, splitter: ComponentSpec = 'mmi1x2', combiner: ComponentSpec | None = None, with_splitter: bool = True, port_e1_splitter: str = 'o2', port_e0_splitter: str = 'o3', port_e1_combiner: str = 'o2', port_e0_combiner: str = 'o3', port1: str = 'o1', port2: str = 'o2', nbends: int = 2, cross_section: CrossSectionSpec = 'strip', cross_section_x_top: CrossSectionSpec | None = 'pin', cross_section_x_bot: CrossSectionSpec | None = None, mirror_bot: bool = False, add_optical_ports_arms: bool = False, min_length: float = 0.01, auto_rename_ports: bool = True) Component#

Mzi.

Parameters:
  • delta_length – bottom arm vertical extra length.

  • length_y – vertical length for both and top arms.

  • length_x – horizontal length. None uses to the straight_x_bot/top defaults.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • splitter – splitter function.

  • combiner – combiner function.

  • with_splitter – if False removes splitter.

  • port_e1_splitter – east top splitter port.

  • port_e0_splitter – east bot splitter port.

  • port_e1_combiner – east top combiner port.

  • port_e0_combiner – east bot combiner port.

  • port1 – input port name.

  • port2 – output port name.

  • nbends – from straight top/bot to combiner (at least 2).

  • cross_section – for routing (sxtop/sxbot to combiner).

  • cross_section_x_top – optional top cross_section (defaults to cross_section).

  • cross_section_x_bot – optional bottom cross_section (defaults to cross_section).

  • mirror_bot – if true, mirrors the bottom arm.

  • add_optical_ports_arms – add all other optical ports in the arms with top_ and bot_ prefix.

  • min_length – minimum length for the straight.

  • auto_rename_ports – if True, renames ports.

               b2______b3
              |  sxtop  |
      straight_y        |
              |         |
              b1        b4
    splitter==|         |==combiner
              b5        b8
              |         |
      straight_y        |
              |         |
delta_length/2          |
              |         |
             b6__sxbot__b7
                  Lx
import gdsfactory as gf

c = gf.components.mzi_pin(delta_length=0, length_y=2, length_x=100, bend='bend_euler', straight='straight', straight_x_top='straight_pin', splitter='mmi1x2', with_splitter=True, port_e1_splitter='o2', port_e0_splitter='o3', port_e1_combiner='o2', port_e0_combiner='o3', port1='o1', port2='o2', nbends=2, cross_section='strip', cross_section_x_top='pin', mirror_bot=False, add_optical_ports_arms=False, min_length=0.01, auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-80.png
gdsfactory.components.mzis.mzit(w0: float = 0.5, w1: float = 0.45, w2: float = 0.55, dy: Delta = 2.0, delta_length: float = 10.0, length: float = 1.0, coupler_length1: float = 5.0, coupler_length2: float = 10.0, coupler_gap1: float = 0.2, coupler_gap2: float = 0.3, taper: ComponentSpec = 'taper', taper_length: float = 5.0, bend90: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', coupler1: ComponentSpec | None = 'coupler', coupler2: ComponentSpec = 'coupler', cross_section: str = 'strip') Component[source]#

Mzi tolerant to fabrication variations.

based on Yufei Xing thesis http://photonics.intec.ugent.be/publications/PhD.asp?ID=250

Parameters:
  • w0 – input waveguide width (um).

  • w1 – narrow waveguide width (um).

  • w2 – wide waveguide width (um).

  • dy – port to port vertical spacing.

  • delta_length – length difference between arms (um).

  • length – shared length for w1 and w2.

  • coupler_length1 – length of coupler1.

  • coupler_length2 – length of coupler2.

  • coupler_gap1 – coupler1.

  • coupler_gap2 – coupler2.

  • taper – taper spec.

  • taper_length – from w0 to w1.

  • bend90 – bend spec.

  • straight – spec.

  • coupler1 – coupler1 spec (optional).

  • coupler2 – coupler2 spec.

  • cross_section – cross_section spec.

               cp1
4   2 __                  __  3___w0_t2   _w2___
        \                /                      \
         \    length1   /                        |
          ============== gap1                    |
         /              \                        |
      __/                \_____w0___t1   _w1     |
3   1                        4               \   |
                                             |   |
2   2                                        |   |
      __                  __w0____t1____w1___/   |
        \                /                       |
         \    length2   /                        |
          ============== gap2                    |
         /               \                       |                       |
      __/                 \ E0_w0__t2 __w1______/
1   1
               cp2
import gdsfactory as gf

c = gf.components.mzit(w0=0.5, w1=0.45, w2=0.55, dy=2, delta_length=10, length=1, coupler_length1=5, coupler_length2=10, coupler_gap1=0.2, coupler_gap2=0.3, taper='taper', taper_length=5, bend90='bend_euler', straight='straight', coupler1='coupler', coupler2='coupler', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-81.png
gdsfactory.components.mzis.mzit_lattice(coupler_lengths: ~collections.abc.Sequence[float] = (10.0, 20.0), coupler_gaps: ~collections.abc.Sequence[float] = (0.2, 0.3), delta_lengths: ~collections.abc.Sequence[float] = (10.0, ), mzi: ComponentSpec = <function mzit>) Component[source]#

Mzi fab tolerant lattice filter.

                cp1
o4  o2 __                  __ o3___w0_t2   _w2___
         \                /                      \
          \    length1   /                        |
           ============== gap1                    |
          /              \                        |
       __/                \_____w0___t1   _w1     |
o3  o1                       o4               \   | .
                 ...                          |   | .
o2  o2                    o3                  |   | .
       __                  _____w0___t1___w1__/   |
         \                /                       |
          \    lengthN   /                        |
           ============== gapN                    |
          /               \                       |
       __/                 \_                     |
o1  o1                      \___w0___t2___w1_____/
                cpN       o4
import gdsfactory as gf

c = gf.components.mzit_lattice(coupler_lengths=(10, 20), coupler_gaps=(0.2, 0.3), delta_lengths=(10,)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-82.png
gdsfactory.components.mzis.mzm(delta_length: float = 10.0, length_y: float = 2.0, *, length_x: float | None = 200, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_y: ComponentSpec | None = None, straight_x_top: ComponentSpec | None = 'straight_pin', straight_x_bot: ComponentSpec | None = 'straight_pin', splitter: ComponentSpec = 'mmi1x2', combiner: ComponentSpec | None = None, with_splitter: bool = True, port_e1_splitter: str = 'o2', port_e0_splitter: str = 'o3', port_e1_combiner: str = 'o2', port_e0_combiner: str = 'o3', port1: str = 'o1', port2: str = 'o2', nbends: int = 2, cross_section: CrossSectionSpec = 'strip', cross_section_x_top: CrossSectionSpec | None = None, cross_section_x_bot: CrossSectionSpec | None = None, mirror_bot: bool = False, add_optical_ports_arms: bool = False, min_length: float = 0.01, auto_rename_ports: bool = True) Component#

Mzi.

Parameters:
  • delta_length – bottom arm vertical extra length.

  • length_y – vertical length for both and top arms.

  • length_x – horizontal length. None uses to the straight_x_bot/top defaults.

  • bend – 90 degrees bend library.

  • straight – straight function.

  • straight_y – straight for length_y and delta_length.

  • straight_x_top – top straight for length_x.

  • straight_x_bot – bottom straight for length_x.

  • splitter – splitter function.

  • combiner – combiner function.

  • with_splitter – if False removes splitter.

  • port_e1_splitter – east top splitter port.

  • port_e0_splitter – east bot splitter port.

  • port_e1_combiner – east top combiner port.

  • port_e0_combiner – east bot combiner port.

  • port1 – input port name.

  • port2 – output port name.

  • nbends – from straight top/bot to combiner (at least 2).

  • cross_section – for routing (sxtop/sxbot to combiner).

  • cross_section_x_top – optional top cross_section (defaults to cross_section).

  • cross_section_x_bot – optional bottom cross_section (defaults to cross_section).

  • mirror_bot – if true, mirrors the bottom arm.

  • add_optical_ports_arms – add all other optical ports in the arms with top_ and bot_ prefix.

  • min_length – minimum length for the straight.

  • auto_rename_ports – if True, renames ports.

               b2______b3
              |  sxtop  |
      straight_y        |
              |         |
              b1        b4
    splitter==|         |==combiner
              b5        b8
              |         |
      straight_y        |
              |         |
delta_length/2          |
              |         |
             b6__sxbot__b7
                  Lx
import gdsfactory as gf

c = gf.components.mzm(delta_length=10, length_y=2, length_x=200, bend='bend_euler', straight='straight', straight_x_top='straight_pin', straight_x_bot='straight_pin', splitter='mmi1x2', with_splitter=True, port_e1_splitter='o2', port_e0_splitter='o3', port_e1_combiner='o2', port_e0_combiner='o3', port1='o1', port2='o2', nbends=2, cross_section='strip', mirror_bot=False, add_optical_ports_arms=False, min_length=0.01, auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-83.png

pads#

gdsfactory.components.pads.pad(size: tuple[float, float] = (100.0, 100.0), layer: LayerSpec = 'MTOP', bbox_layers: tuple[LayerSpec, ...] | None = None, bbox_offsets: tuple[float, ...] | None = None, port_inclusion: float = 0, port_orientation: float | None = 0, port_orientations: tuple[int, ...] | list[int] | None = (180, 90, 0, -90), port_type: str = 'pad') Component[source]#

Returns rectangular pad with ports.

Parameters:
  • size – x, y size.

  • layer – pad layer.

  • bbox_layers – list of layers.

  • bbox_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • port_inclusion – from edge.

  • port_orientation – in degrees for the center port.

  • port_orientations – list of port_orientations to add. None does not add ports.

  • port_type – port type for pad port.

import gdsfactory as gf

c = gf.components.pad(size=(100, 100), layer='MTOP', port_inclusion=0, port_orientation=0, port_orientations=(180, 90, 0, -90), port_type='pad').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-84.png
gdsfactory.components.pads.pad_array(pad: ComponentSpec = 'pad', spacing: tuple[float, float] | None = None, columns: int = 6, rows: int = 1, column_pitch: float = 150.0, row_pitch: float = 150.0, port_orientation: float = 0, orientation: float | None = None, size: tuple[float, float] = (100.0, 100.0), layer: LayerSpec = 'MTOP', centered_ports: bool = False, auto_rename_ports: bool = False) Component[source]#

Returns 2D array of pads.

Parameters:
  • pad – pad element.

  • spacing – x, y pitch.

  • columns – number of columns.

  • rows – number of rows.

  • column_pitch – x pitch.

  • row_pitch – y pitch.

  • port_orientation – port orientation in deg. None for low speed DC ports.

  • orientation – (deprecated).

  • size – pad size.

  • layer – pad layer.

  • centered_ports – True add ports to center. False add ports to the edge.

  • auto_rename_ports – True to auto rename ports.

import gdsfactory as gf

c = gf.components.pad_array(pad='pad', columns=6, rows=1, column_pitch=150, row_pitch=150, port_orientation=0, size=(100, 100), layer='MTOP', centered_ports=False, auto_rename_ports=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-85.png
gdsfactory.components.pads.pad_array0(pad: ComponentSpec = 'pad', spacing: Spacing | None = None, *, columns: int = 1, rows: int = 3, column_pitch: float = 150.0, row_pitch: float = 150.0, port_orientation: AngleInDegrees = 0, orientation: AngleInDegrees | None = None, size: Float2 = (100.0, 100.0), layer: LayerSpec = 'MTOP', centered_ports: bool = False, auto_rename_ports: bool = False) Component#

Returns 2D array of pads.

Parameters:
  • pad – pad element.

  • spacing – x, y pitch.

  • columns – number of columns.

  • rows – number of rows.

  • column_pitch – x pitch.

  • row_pitch – y pitch.

  • port_orientation – port orientation in deg. None for low speed DC ports.

  • orientation – (deprecated).

  • size – pad size.

  • layer – pad layer.

  • centered_ports – True add ports to center. False add ports to the edge.

  • auto_rename_ports – True to auto rename ports.

import gdsfactory as gf

c = gf.components.pad_array0(pad='pad', columns=1, rows=3, column_pitch=150, row_pitch=150, port_orientation=0, size=(100, 100), layer='MTOP', centered_ports=False, auto_rename_ports=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-86.png
gdsfactory.components.pads.pad_array180(pad: ComponentSpec = 'pad', spacing: Spacing | None = None, *, columns: int = 1, rows: int = 3, column_pitch: float = 150.0, row_pitch: float = 150.0, port_orientation: AngleInDegrees = 180, orientation: AngleInDegrees | None = None, size: Float2 = (100.0, 100.0), layer: LayerSpec = 'MTOP', centered_ports: bool = False, auto_rename_ports: bool = False) Component#

Returns 2D array of pads.

Parameters:
  • pad – pad element.

  • spacing – x, y pitch.

  • columns – number of columns.

  • rows – number of rows.

  • column_pitch – x pitch.

  • row_pitch – y pitch.

  • port_orientation – port orientation in deg. None for low speed DC ports.

  • orientation – (deprecated).

  • size – pad size.

  • layer – pad layer.

  • centered_ports – True add ports to center. False add ports to the edge.

  • auto_rename_ports – True to auto rename ports.

import gdsfactory as gf

c = gf.components.pad_array180(pad='pad', columns=1, rows=3, column_pitch=150, row_pitch=150, port_orientation=180, size=(100, 100), layer='MTOP', centered_ports=False, auto_rename_ports=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-87.png
gdsfactory.components.pads.pad_array270(pad: ComponentSpec = 'pad', spacing: Spacing | None = None, columns: int = 6, rows: int = 1, column_pitch: float = 150.0, row_pitch: float = 150.0, *, port_orientation: AngleInDegrees = 270, orientation: AngleInDegrees | None = None, size: Float2 = (100.0, 100.0), layer: LayerSpec = 'MTOP', centered_ports: bool = False, auto_rename_ports: bool = False) Component#

Returns 2D array of pads.

Parameters:
  • pad – pad element.

  • spacing – x, y pitch.

  • columns – number of columns.

  • rows – number of rows.

  • column_pitch – x pitch.

  • row_pitch – y pitch.

  • port_orientation – port orientation in deg. None for low speed DC ports.

  • orientation – (deprecated).

  • size – pad size.

  • layer – pad layer.

  • centered_ports – True add ports to center. False add ports to the edge.

  • auto_rename_ports – True to auto rename ports.

import gdsfactory as gf

c = gf.components.pad_array270(pad='pad', columns=6, rows=1, column_pitch=150, row_pitch=150, port_orientation=270, size=(100, 100), layer='MTOP', centered_ports=False, auto_rename_ports=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-88.png
gdsfactory.components.pads.pad_array90(pad: ComponentSpec = 'pad', spacing: Spacing | None = None, columns: int = 6, rows: int = 1, column_pitch: float = 150.0, row_pitch: float = 150.0, *, port_orientation: AngleInDegrees = 90, orientation: AngleInDegrees | None = None, size: Float2 = (100.0, 100.0), layer: LayerSpec = 'MTOP', centered_ports: bool = False, auto_rename_ports: bool = False) Component#

Returns 2D array of pads.

Parameters:
  • pad – pad element.

  • spacing – x, y pitch.

  • columns – number of columns.

  • rows – number of rows.

  • column_pitch – x pitch.

  • row_pitch – y pitch.

  • port_orientation – port orientation in deg. None for low speed DC ports.

  • orientation – (deprecated).

  • size – pad size.

  • layer – pad layer.

  • centered_ports – True add ports to center. False add ports to the edge.

  • auto_rename_ports – True to auto rename ports.

import gdsfactory as gf

c = gf.components.pad_array90(pad='pad', columns=6, rows=1, column_pitch=150, row_pitch=150, port_orientation=90, size=(100, 100), layer='MTOP', centered_ports=False, auto_rename_ports=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-89.png
gdsfactory.components.pads.pad_gsg_open(size: Float2 = (22, 7), layer_metal: LayerSpec = 'MTOP', metal_spacing: float = 5.0, *, short: bool = False, pad: ComponentSpec = 'pad', pad_pitch: float = 150, route_xsize: float = 50) gf.Component#

Returns high speed GSG pads for calibrating the RF probes.

Parameters:
  • size – for the short.

  • layer_metal – for the short.

  • metal_spacing – in um.

  • short – if False returns an open.

  • pad – function for pad.

  • pad_pitch – in um.

  • route_xsize – in um.

import gdsfactory as gf

c = gf.components.pad_gsg_open(size=(22, 7), layer_metal='MTOP', metal_spacing=5, short=False, pad='pad', pad_pitch=150, route_xsize=50).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-90.png
gdsfactory.components.pads.pad_gsg_short(size: tuple[float, float] = (22, 7), layer_metal: LayerSpec = 'MTOP', metal_spacing: float = 5.0, short: bool = True, pad: ComponentSpec = 'pad', pad_pitch: float = 150, route_xsize: float = 50) Component[source]#

Returns high speed GSG pads for calibrating the RF probes.

Parameters:
  • size – for the short.

  • layer_metal – for the short.

  • metal_spacing – in um.

  • short – if False returns an open.

  • pad – function for pad.

  • pad_pitch – in um.

  • route_xsize – in um.

import gdsfactory as gf

c = gf.components.pad_gsg_short(size=(22, 7), layer_metal='MTOP', metal_spacing=5, short=True, pad='pad', pad_pitch=150, route_xsize=50).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-91.png
gdsfactory.components.pads.pad_rectangular(*, size: Size = 'pad_size', layer: LayerSpec = 'MTOP', bbox_layers: tuple[LayerSpec, ...] | None = None, bbox_offsets: tuple[float, ...] | None = None, port_inclusion: float = 0, port_orientation: AngleInDegrees | None = 0, port_orientations: Ints | None = (180, 90, 0, -90), port_type: str = 'pad') Component#

Returns rectangular pad with ports.

Parameters:
  • size – x, y size.

  • layer – pad layer.

  • bbox_layers – list of layers.

  • bbox_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • port_inclusion – from edge.

  • port_orientation – in degrees for the center port.

  • port_orientations – list of port_orientations to add. None does not add ports.

  • port_type – port type for pad port.

import gdsfactory as gf

c = gf.components.pad_rectangular(size='pad_size', layer='MTOP', port_inclusion=0, port_orientation=0, port_orientations=(180, 90, 0, -90), port_type='pad').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-92.png
gdsfactory.components.pads.pad_small(*, size: Size = (80, 80), layer: LayerSpec = 'MTOP', bbox_layers: tuple[LayerSpec, ...] | None = None, bbox_offsets: tuple[float, ...] | None = None, port_inclusion: float = 0, port_orientation: AngleInDegrees | None = 0, port_orientations: Ints | None = (180, 90, 0, -90), port_type: str = 'pad') Component#

Returns rectangular pad with ports.

Parameters:
  • size – x, y size.

  • layer – pad layer.

  • bbox_layers – list of layers.

  • bbox_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • port_inclusion – from edge.

  • port_orientation – in degrees for the center port.

  • port_orientations – list of port_orientations to add. None does not add ports.

  • port_type – port type for pad port.

import gdsfactory as gf

c = gf.components.pad_small(size=(80, 80), layer='MTOP', port_inclusion=0, port_orientation=0, port_orientations=(180, 90, 0, -90), port_type='pad').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-93.png
gdsfactory.components.pads.pads_shorted(pad: ComponentSpec = 'pad', columns: int = 8, pad_pitch: float = 150.0, layer_metal: LayerSpec = 'MTOP', metal_width: float = 10) Component[source]#

Returns a 1D array of shorted_pads.

Parameters:
  • pad – pad spec.

  • columns – number of columns.

  • pad_pitch – in um

  • layer_metal – for the short.

  • metal_width – for the short.

import gdsfactory as gf

c = gf.components.pads_shorted(pad='pad', columns=8, pad_pitch=150, layer_metal='MTOP', metal_width=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-94.png
gdsfactory.components.pads.rectangle_with_slits(size: tuple[float, float] = (100.0, 200.0), layer: LayerSpec = 'WG', layer_slit: LayerSpec = 'SLAB150', centered: bool = False, port_type: str | None = None, slit_size: tuple[float, float] = (1.0, 1.0), slit_spacing: tuple[float, float] | None = None, slit_column_pitch: float = 20, slit_row_pitch: float = 20, slit_enclosure: float = 10) Component[source]#

Returns a rectangle with slits.

Metal slits reduce stress.

Parameters:
  • size – (tuple) Width and height of rectangle.

  • layer – Specific layer to put polygon geometry on.

  • layer_slit – does a boolean NOT when None.

  • centered – True sets center to (0, 0), False sets south-west to (0, 0)

  • port_type – for the rectangle.

  • slit_size – x, y slit size.

  • slit_spacing – pitch_x, pitch_y for slits.

  • slit_column_pitch – pitch for columns of slits.

  • slit_row_pitch – pitch for rows of slits.

  • slit_enclosure – from slit to rectangle edge.

slit_enclosure
_____________________________________
|<--->                              |
|                                   |
|      ______________________       |
|     |                      |      |
|     |                      | slit_size[1]
|  _  |______________________|      |
|  |                                |
|  | slit_row_pitch                 |
|  |                                |  size[1]
|  |   ______________________       |
|  |  |                      |      |
|  |  |                      |      |
|  _  |______________________|      |
|     <--------------------->       |
|            slit_size[0]           |
|___________________________________|
                size[0]
import gdsfactory as gf

c = gf.components.rectangle_with_slits(size=(100, 200), layer='WG', layer_slit='SLAB150', centered=False, slit_size=(1, 1), slit_column_pitch=20, slit_row_pitch=20, slit_enclosure=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-95.png

pcms#

gdsfactory.components.pcms.cavity(component: ComponentSpec = 'dbr', coupler: ComponentSpec = 'coupler', length: float = 0.1, gap: float = 0.2, **kwargs: Any) Component[source]#

Returns cavity from a coupler and a mirror.

connects the W0 port of the mirror to E1 and W1 coupler ports creating a resonant cavity

Parameters:
  • component – mirror.

  • coupler – coupler library.

  • length – coupler length.

  • gap – coupler gap.

  • kwargs – coupler_settings.

ml (mirror left)              mr (mirror right)
 |                               |
 |o1 - o2__             __o3 - o1|
 |         \           /         |
            \         /
          ---=========---
   o1  o1    length      o4    o2
import gdsfactory as gf

c = gf.components.cavity(component='dbr', coupler='coupler', length=0.1, gap=0.2).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-96.png
gdsfactory.components.pcms.cdsem_all(widths: tuple[float, ...] = (0.4, 0.45, 0.5, 0.6, 0.8, 1.0), dense_lines_width: float | None = 0.3, dense_lines_width_difference: float = 0.02, dense_lines_gap: float = 0.3, dense_lines_labels: tuple[str, ...] = ('DL', 'DM', 'DH'), straight: ComponentSpec = 'straight', bend90: ComponentSpec | None = 'bend_circular', cross_section: CrossSectionSpec = 'strip', text: ComponentSpec = 'text_rectangular', spacing: float = 5, cdsem_bend180: ComponentSpec = 'cdsem_bend180', text_size: float = 1) Component[source]#

Column with all optical PCMs.

Parameters:
  • widths – for straight lines.

  • dense_lines_width – in um.

  • dense_lines_width_difference – in um.

  • dense_lines_gap – in um.

  • dense_lines_labels – strings.

  • straight – spec.

  • bend90 – spec.

  • cross_section – spec.

  • text – spec.

  • spacing – from group to group.

  • cdsem_bend180 – spec.

  • text_size – in um.

import gdsfactory as gf

c = gf.components.cdsem_all(widths=(0.4, 0.45, 0.5, 0.6, 0.8, 1), dense_lines_width=0.3, dense_lines_width_difference=0.02, dense_lines_gap=0.3, dense_lines_labels=('DL', 'DM', 'DH'), straight='straight', bend90='bend_circular', cross_section='strip', text='text_rectangular', spacing=5, cdsem_bend180='cdsem_bend180', text_size=1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-97.png
gdsfactory.components.pcms.cdsem_bend180(width: float = 0.5, radius: float = 10.0, wg_length: float | None = 420.0, straight: ComponentSpec = 'straight', bend90: ComponentSpec = 'bend_circular', cross_section: CrossSectionSpec = 'strip', text: ComponentSpec = 'text_rectangular', text_size: float = 1.0) Component[source]#

Returns CDSEM structures.

Parameters:
  • width – of the line.

  • radius – um.

  • wg_length – in um.

  • straight – spec.

  • bend90 – spec.

  • cross_section – spec.

  • text – spec.

  • text_size – um.

import gdsfactory as gf

c = gf.components.cdsem_bend180(width=0.5, radius=10, wg_length=420, straight='straight', bend90='bend_circular', cross_section='strip', text='text_rectangular', text_size=1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-98.png
gdsfactory.components.pcms.cdsem_coupler(length: float = 420.0, gaps: Sequence[float] = (0.15, 0.2, 0.25), cross_section: CrossSectionSpec = 'strip_no_ports', text: ComponentSpec | None = 'text_rectangular', spacing: float = 7.0, positions: Sequence[float | None] | None = None, width: float | None = None, text_size: float = 1.0) Component[source]#

Returns 2 coupled waveguides gap sweep.

Parameters:
  • length – for the line.

  • gaps – list of gaps for the sweep.

  • cross_section – for the lines.

  • text – optional text for labels.

  • spacing – Optional center to center spacing.

  • positions – Optional positions for the text labels.

  • width – width of the waveguide. If None, it will use the width of the cross_section.

  • text_size – size of the text.

import gdsfactory as gf

c = gf.components.cdsem_coupler(length=420, gaps=(0.15, 0.2, 0.25), cross_section='strip_no_ports', text='text_rectangular', spacing=7, text_size=1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-99.png
gdsfactory.components.pcms.cdsem_straight(widths: Sequence[float] = (0.4, 0.45, 0.5, 0.6, 0.8, 1.0), length: float = 420.0, cross_section: CrossSectionSpec = 'strip_no_ports', text: ComponentSpec | None = 'text_rectangular', spacing: float = 7.0, positions: Sequence[float | None] | None = None, text_size: float = 1) Component[source]#

Returns straight waveguide lines width sweep.

Parameters:
  • widths – for the sweep.

  • length – for the line.

  • cross_section – for the lines.

  • text – optional text for labels.

  • spacing – Optional center to center spacing.

  • positions – Optional positions for the text labels.

  • text_size – in um.

import gdsfactory as gf

c = gf.components.cdsem_straight(widths=(0.4, 0.45, 0.5, 0.6, 0.8, 1), length=420, cross_section='strip_no_ports', text='text_rectangular', spacing=7, text_size=1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-100.png
gdsfactory.components.pcms.cdsem_straight_density(widths: Floats = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3), gaps: Floats = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3), length: float = 420.0, label: str = '', cross_section: CrossSectionSpec = 'strip_no_ports', text: ComponentSpec | None = 'text_rectangular', text_size: float = 1.0) Component[source]#

Returns sweep of dense straight lines.

Parameters:
  • widths – list of widths.

  • gaps – list of gaps.

  • length – of the lines.

  • label – defaults to widths[0] gaps[0].

  • cross_section – spec.

  • text – optional function for text.

  • text_size – size of the text.

import gdsfactory as gf

c = gf.components.cdsem_straight_density(widths=(0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3), gaps=(0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3), length=420, label='', cross_section='strip_no_ports', text='text_rectangular', text_size=1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-101.png
gdsfactory.components.pcms.cutback_2x2(component: ComponentSpec = 'mmi2x2', cols: int = 4, rows: int = 5, port1: str = 'o1', port2: str = 'o2', port3: str = 'o3', port4: str = 'o4', bend180: ComponentSpec = 'bend_circular180', mirror: bool = False, straight_length: float | None = None, cross_section: CrossSectionSpec = 'strip', straight: ComponentSpec = 'straight') Component[source]#

Returns a daisy chain of splitters for measuring their loss.

Parameters:
  • component – for cutback.

  • cols – number of columns.

  • rows – number of rows.

  • port1 – name of first optical port.

  • port2 – name of second optical port.

  • port3 – name of third optical port.

  • port4 – name of fourth optical port.

  • bend180 – ubend.

  • mirror – Flips component. Useful when ‘o2’ is the port that you want to route to.

  • straight_length – length of the straight section between cutbacks.

  • cross_section – specification (CrossSection, string or dict).

  • straight – straight spec.

import gdsfactory as gf

c = gf.components.cutback_2x2(component='mmi2x2', cols=4, rows=5, port1='o1', port2='o2', port3='o3', port4='o4', bend180='bend_circular180', mirror=False, cross_section='strip', straight='straight').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-102.png
gdsfactory.components.pcms.cutback_bend(component: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_length: float = 5.0, rows: int = 6, cols: int = 5, **kwargs: Any) Component[source]#

We recommend using cutback_bend90 instead for a smaller footprint.

Parameters:
  • component – bend spec.

  • straight – straight spec.

  • straight_length – in um.

  • rows – number of rows.

  • cols – number of cols.

  • kwargs – cross_section settings.

this is a column
    _
  _|
_|

_ this is a row
import gdsfactory as gf

c = gf.components.cutback_bend(component='bend_euler', straight='straight', straight_length=5, rows=6, cols=5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-103.png
gdsfactory.components.pcms.cutback_bend180(component: ComponentSpec = 'bend_euler180', straight: ComponentSpec = 'straight', straight_length: float = 5.0, rows: int = 6, cols: int = 6, spacing: float = 3.0, **kwargs: Any) Component[source]#

Returns cutback to measure u bend loss.

Parameters:
  • component – bend spec.

  • straight – straight spec.

  • straight_length – in um.

  • rows – number of rows.

  • cols – number of cols.

  • spacing – in um.

  • kwargs – cross_section settings.

  _
_| |_  this is a row

_ this is a column
import gdsfactory as gf

c = gf.components.cutback_bend180(component='bend_euler180', straight='straight', straight_length=5, rows=6, cols=6, spacing=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-104.png
gdsfactory.components.pcms.cutback_bend180circular(*, component: ComponentSpec = 'bend_circular180', straight: ComponentSpec = 'straight', straight_length: float = 5.0, rows: int = 6, cols: int = 6, spacing: float = 3.0, **kwargs: Any) Component#

Returns cutback to measure u bend loss.

Parameters:
  • component – bend spec.

  • straight – straight spec.

  • straight_length – in um.

  • rows – number of rows.

  • cols – number of cols.

  • spacing – in um.

  • kwargs – cross_section settings.

  _
_| |_  this is a row

_ this is a column
import gdsfactory as gf

c = gf.components.cutback_bend180circular(component='bend_circular180', straight='straight', straight_length=5, rows=6, cols=6, spacing=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-105.png
gdsfactory.components.pcms.cutback_bend90(component: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', straight_length: float = 5.0, rows: int = 6, cols: int = 6, spacing: int = 5, **kwargs: Any) Component[source]#

Returns bend90 cutback.

Parameters:
  • component – bend spec.

  • straight – straight spec.

  • straight_length – in um.

  • rows – number of rows.

  • cols – number of cols.

  • spacing – in um.

  • kwargs – cross_section settings.

   _
|_| |
import gdsfactory as gf

c = gf.components.cutback_bend90(component='bend_euler', straight='straight', straight_length=5, rows=6, cols=6, spacing=5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-106.png
gdsfactory.components.pcms.cutback_bend90circular(*, component: ComponentSpec = 'bend_circular', straight: ComponentSpec = 'straight', straight_length: float = 5.0, rows: int = 6, cols: int = 6, spacing: int = 5, **kwargs: Any) Component#

Returns bend90 cutback.

Parameters:
  • component – bend spec.

  • straight – straight spec.

  • straight_length – in um.

  • rows – number of rows.

  • cols – number of cols.

  • spacing – in um.

  • kwargs – cross_section settings.

   _
|_| |
import gdsfactory as gf

c = gf.components.cutback_bend90circular(component='bend_circular', straight='straight', straight_length=5, rows=6, cols=6, spacing=5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-107.png
gdsfactory.components.pcms.cutback_component(component: ComponentSpec = 'taper_0p5_to_3_l36', cols: int = 4, rows: int = 5, port1: str = 'o1', port2: str = 'o2', bend180: ComponentSpec = 'bend_euler180', mirror: bool = False, mirror1: bool = False, mirror2: bool = False, straight_length: float | None = None, straight_length_pair: float | None = None, straight: ComponentSpec = 'straight', cross_section: CrossSectionSpec = 'strip', **kwargs: Any) Component[source]#

Returns a daisy chain of components for measuring their loss.

Works only for components with 2 ports (input, output).

Parameters:
  • component – for cutback.

  • cols – number of columns.

  • rows – number of rows.

  • port1 – name of first optical port.

  • port2 – name of second optical port.

  • bend180 – ubend.

  • mirror – Flips component. Useful when ‘o2’ is the port that you want to route to.

  • mirror1 – mirrors first component.

  • mirror2 – mirrors second component.

  • straight_length – length of the straight section between cutbacks.

  • straight_length_pair – length of the straight section between each component pair.

  • cross_section – specification (CrossSection, string or dict).

  • straight – straight spec.

  • kwargs – component settings.

import gdsfactory as gf

c = gf.components.cutback_component(component='taper_0p5_to_3_l36', cols=4, rows=5, port1='o1', port2='o2', bend180='bend_euler180', mirror=False, mirror1=False, mirror2=False, straight='straight', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-108.png
gdsfactory.components.pcms.cutback_component_mirror(component: ComponentSpec = 'taper_0p5_to_3_l36', cols: int = 4, rows: int = 5, port1: str = 'o1', port2: str = 'o2', bend180: ComponentSpec = 'bend_euler180', *, mirror: bool = True, mirror1: bool = False, mirror2: bool = False, straight_length: float | None = None, straight_length_pair: float | None = None, straight: ComponentSpec = 'straight', cross_section: CrossSectionSpec = 'strip', **kwargs: Any) Component#

Returns a daisy chain of components for measuring their loss.

Works only for components with 2 ports (input, output).

Parameters:
  • component – for cutback.

  • cols – number of columns.

  • rows – number of rows.

  • port1 – name of first optical port.

  • port2 – name of second optical port.

  • bend180 – ubend.

  • mirror – Flips component. Useful when ‘o2’ is the port that you want to route to.

  • mirror1 – mirrors first component.

  • mirror2 – mirrors second component.

  • straight_length – length of the straight section between cutbacks.

  • straight_length_pair – length of the straight section between each component pair.

  • cross_section – specification (CrossSection, string or dict).

  • straight – straight spec.

  • kwargs – component settings.

import gdsfactory as gf

c = gf.components.cutback_component_mirror(component='taper_0p5_to_3_l36', cols=4, rows=5, port1='o1', port2='o2', bend180='bend_euler180', mirror=True, mirror1=False, mirror2=False, straight='straight', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-109.png
gdsfactory.components.pcms.cutback_splitter(component: ComponentSpec = 'mmi1x2', cols: int = 4, rows: int = 5, port1: str = 'o1', port2: str = 'o2', port3: str = 'o3', bend180: ComponentSpec = 'bend_euler180', mirror: bool = False, straight: ComponentSpec = 'straight', straight_length: float | None = None, cross_section: CrossSectionSpec = 'strip', **kwargs: Any) Component[source]#

Returns a daisy chain of splitters for measuring their loss.

Parameters:
  • component – for cutback.

  • cols – number of columns.

  • rows – number of rows.

  • port1 – name of first optical port.

  • port2 – name of second optical port.

  • port3 – name of third optical port.

  • bend180 – ubend.

  • mirror – Flips component. Useful when ‘o2’ is the port that you want to route to.

  • straight – waveguide spec to connect both sides.

  • straight_length – length of the straight section between cutbacks.

  • cross_section – specification (CrossSection, string or dict).

  • kwargs – cross_section settings.

import gdsfactory as gf

c = gf.components.cutback_splitter(component='mmi1x2', cols=4, rows=5, port1='o1', port2='o2', port3='o3', bend180='bend_euler180', mirror=False, straight='straight', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-110.png
gdsfactory.components.pcms.greek_cross(length: float = 30, layers: Sequence[tuple[int, int] | str | int | LayerEnum] = ('WG', 'N'), widths: Sequence[float] = (2.0, 3.0), offsets: Sequence[float] | None = None, via_stack: str | Callable[[...], Component] | dict[str, Any] | KCell = 'via_stack_npp_m1', layer_index: int = 0) Component[source]#

Simple greek cross with via stacks at the endpoints.

Process control monitor for dopant sheet resistivity and linewidth variation.

Parameters:
  • length – length of cross arms.

  • layers – list of layers.

  • widths – list of widths (same order as layers).

  • offsets – how much to extend each layer beyond the cross length negative shorter, positive longer.

  • via_stack – via component to attach to the cross.

  • layer_index – index of the layer to connect the via_stack to.

    via_stack
    <------->
    _________       length          ________
    |       |<-------------------->|
2x  |       |     |   ↓       |<-->|
    |       |======== width =======|
    |_______|<--> |   ↑       |<-->|________
            offset            offset

References: - Walton, Anthony J.. “MICROELECTRONIC TEST STRUCTURES.” (1999). - W. Versnel, Analysis of the Greek cross, a Van der Pauw structure with finite

contacts, Solid-State Electronics, Volume 22, Issue 11, 1979, Pages 911-914, ISSN 0038-1101, https://doi.org/10.1016/0038-1101(79)90061-3.

import gdsfactory as gf

c = gf.components.greek_cross(length=30, layers=('WG', 'N'), widths=(2, 3), via_stack='via_stack_npp_m1', layer_index=0).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-111.png
gdsfactory.components.pcms.greek_cross_with_pads(pad: str | ~collections.abc.Callable[[...], ~gdsfactory.component.Component] | dict[str, ~typing.Any] | ~kfactory.kcell.KCell = 'pad', pad_pitch: float = 150.0, greek_cross_component: str | ~collections.abc.Callable[[...], ~gdsfactory.component.Component] | dict[str, ~typing.Any] | ~kfactory.kcell.KCell = 'greek_cross', pad_via: str | ~collections.abc.Callable[[...], ~gdsfactory.component.Component] | dict[str, ~typing.Any] | ~kfactory.kcell.KCell = 'via_stack_m1_mtop', cross_section: ~gdsfactory.cross_section.CrossSection | str | dict[str, ~typing.Any] | ~collections.abc.Callable[[...], ~gdsfactory.cross_section.CrossSection] | ~kfactory.cross_section.SymmetricalCrossSection = <function metal1>, pad_port_name: str = 'e4') Component[source]#

Greek cross under 4 DC pads, ready to test.

Parameters:
  • pad – component to use for probe pads.

  • pad_pitch – spacing between pads.

  • greek_cross_component – component to use for greek cross.

  • pad_via – via to add to the pad.

  • cross_section – cross-section for cross via to pad via wiring.

  • pad_port_name – name of the port to connect to the greek cross.

import gdsfactory as gf

c = gf.components.greek_cross_with_pads(pad='pad', pad_pitch=150, greek_cross_component='greek_cross', pad_via='via_stack_m1_mtop', pad_port_name='e4').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-112.png
gdsfactory.components.pcms.litho_calipers(notch_size: tuple[float, float] = (2.0, 5.0), notch_spacing: float = 2.0, num_notches: int = 11, offset_per_notch: float = 0.1, row_spacing: float = 0.0, layer1: LayerSpec = 'WG', layer2: LayerSpec = 'SLAB150') Component[source]#

Vernier caliper structure to test lithography alignment.

Only the middle finger is aligned and the rest are offset. adapted from phidl

Parameters:
  • notch_size – [xwidth, yheight].

  • notch_spacing – in um.

  • num_notches – number of notches.

  • offset_per_notch – in um.

  • row_spacing – 0

  • layer1 – layer.

  • layer2 – layer.

import gdsfactory as gf

c = gf.components.litho_calipers(notch_size=(2, 5), notch_spacing=2, num_notches=11, offset_per_notch=0.1, row_spacing=0, layer1='WG', layer2='SLAB150').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-113.png
gdsfactory.components.pcms.litho_ruler(height: float = 2, width: float = 0.5, spacing: float = 2.0, scale: tuple[float, ...] = (3, 1, 1, 1, 1, 2, 1, 1, 1, 1), num_marks: int = 21, layer: LayerSpec = 'WG') Component[source]#

Ruler structure for lithographic measurement.

Includes marks of varying scales to allow for easy reading by eye.

based on phidl.geometry

Parameters:
  • height – Height of the ruling marks in um.

  • width – Width of the ruling marks in um.

  • spacing – Center-to-center spacing of the ruling marks in um.

  • scale – Height scale pattern of marks.

  • num_marks – Total number of marks to generate.

  • layer – Specific layer to put the ruler geometry on.

import gdsfactory as gf

c = gf.components.litho_ruler(height=2, width=0.5, spacing=2, scale=(3, 1, 1, 1, 1, 2, 1, 1, 1, 1), num_marks=21, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-114.png
gdsfactory.components.pcms.litho_steps(line_widths: tuple[float, ...] = (1.0, 2.0, 4.0, 8.0, 16.0), line_spacing: float = 10.0, height: float = 100.0, layer: LayerSpec = 'WG') Component[source]#

Positive + negative tone linewidth test.

used for lithography resolution test patterning based on phidl

Parameters:
  • line_widths – in um.

  • line_spacing – in um.

  • height – in um.

  • layer – Specific layer to put the ruler geometry on.

import gdsfactory as gf

c = gf.components.litho_steps(line_widths=(1, 2, 4, 8, 16), line_spacing=10, height=100, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-115.png
gdsfactory.components.pcms.pixel(size: int = 1, layer: LayerSpec = 'WG') Component[source]#
import gdsfactory as gf

c = gf.components.pixel(size=1, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-116.png
gdsfactory.components.pcms.qrcode(data: str = 'mask01', psize: int = 1, layer: LayerSpec = 'WG') Component[source]#

Returns QRCode.

Parameters:
  • data – string to encode.

  • psize – pixel size.

  • layer – layer to use.

import gdsfactory as gf

c = gf.components.qrcode(data='mask01', psize=1, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-117.png
gdsfactory.components.pcms.resistance_meander(pad_size: tuple[float, float] = (50.0, 50.0), num_squares: int = 1000, width: float = 1.0, res_layer: LayerSpec = 'MTOP', pad_layer: LayerSpec = 'MTOP') Component[source]#

Return meander to test resistance.

based on phidl.geometry

Parameters:
  • pad_size – Size of the two matched impedance pads (microns).

  • num_squares – Number of squares comprising the resonator wire.

  • width – The width of the squares (microns).

  • res_layer – resistance layer.

  • pad_layer – pad layer.

import gdsfactory as gf

c = gf.components.resistance_meander(pad_size=(50, 50), num_squares=1000, width=1, res_layer='MTOP', pad_layer='MTOP').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-118.png
gdsfactory.components.pcms.resistance_sheet(width: float = 10.0, layers: LayerSpecs = ('HEATER',), layer_offsets: Sequence[float] = (0, 0.2), pad: ComponentSpec = 'via_stack_heater_mtop', pad_size: tuple[float, float] = (50.0, 50.0), pad_pitch: float = 100.0, ohms_per_square: float | None = None, pad_port_name: str = 'e4') Component[source]#

Returns Sheet resistance.

keeps connectivity for pads and first layer in layers

Parameters:
  • width – in um.

  • layers – for the middle part.

  • layer_offsets – from edge, positive: over, negative: inclusion.

  • pad – function to create a pad.

  • pad_size – in um.

  • pad_pitch – in um.

  • ohms_per_square – optional sheet resistance to compute info.resistance.

  • pad_port_name – port name for the pad.

import gdsfactory as gf

c = gf.components.resistance_sheet(width=10, layers=('HEATER',), layer_offsets=(0, 0.2), pad='via_stack_heater_mtop', pad_size=(50, 50), pad_pitch=100, pad_port_name='e4').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-119.png
gdsfactory.components.pcms.staircase(component: ComponentSpec | Component = 'bend_euler', straight: ComponentSpec = 'straight', length_v: float = 5.0, length_h: float = 5.0, rows: int = 4, **kwargs: Any) Component[source]#

Returns staircase.

Parameters:
  • component – bend spec.

  • straight – straight spec.

  • length_v – vertical length.

  • length_h – vertical length.

  • rows – number of rows.

  • cols – number of cols.

  • kwargs – cross_section settings.

import gdsfactory as gf

c = gf.components.staircase(component='bend_euler', straight='straight', length_v=5, length_h=5, rows=4).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-120.png
gdsfactory.components.pcms.verniers(widths: Sequence[float] = (0.1, 0.2, 0.3, 0.4, 0.5), gap: float = 0.1, xsize: float = 100.0, layer_label: LayerSpec = 'TEXT', straight: ComponentSpec = 'straight', cross_section: CrossSectionSpec = 'strip_no_ports', **kwargs: Any) Component[source]#

Returns a component with verniers.

Parameters:
  • widths – list of widths.

  • gap – gap between verniers.

  • xsize – size of the component.

  • layer_label – layer for the labels.

  • straight – straight function.

  • cross_section – cross_section spec.

  • kwargs – straight settings.

import gdsfactory as gf

c = gf.components.verniers(widths=(0.1, 0.2, 0.3, 0.4, 0.5), gap=0.1, xsize=100, layer_label='TEXT', straight='straight', cross_section='strip_no_ports').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-121.png
gdsfactory.components.pcms.version_stamp(labels: tuple[str, ...] = ('demo_label',), with_qr_code: bool = False, layer: LayerSpec = 'WG', pixel_size: int = 1, version: str | None = None, text_size: int = 10) Component[source]#

Component with module version and date.

Parameters:
  • labels – Iterable of labels.

  • with_qr_code – Whether to add a QR code with the date.

  • layer – Layer to use.

  • pixel_size – Pixel size.

  • version – Version string.

  • text_size – Text size.

import gdsfactory as gf

c = gf.components.version_stamp(labels=('demo_label',), with_qr_code=False, layer='WG', pixel_size=1, text_size=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-122.png

rings#

gdsfactory.components.rings.coupler_bend(radius: float = 10.0, coupler_gap: float = 0.2, coupling_angle_coverage: float = 120.0, cross_section_inner: CrossSectionSpec = 'strip', cross_section_outer: CrossSectionSpec = 'strip', bend: ~collections.abc.Callable[[...], ~gdsfactory.component.Component | ~gdsfactory.component.ComponentAllAngle] = <function bend_circular_all_angle>, bend_output: ComponentSpec = 'bend_euler') Component[source]#

Compact curved coupler with bezier escape.

TODO: fix for euler bends.

Parameters:
  • radius – um.

  • coupler_gap – um.

  • coupling_angle_coverage – degrees.

  • cross_section_inner – spec inner bend.

  • cross_section_outer – spec outer bend.

  • bend – for bend.

  • bend_output – for bend.

    r   4
    |   |
    |  / ___3
    | / /
2____/ /
1_____/
import gdsfactory as gf

c = gf.components.coupler_bend(radius=10, coupler_gap=0.2, coupling_angle_coverage=120, cross_section_inner='strip', cross_section_outer='strip', bend_output='bend_euler').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-123.png
gdsfactory.components.rings.coupler_ring_bend(radius: float = 10.0, coupler_gap: float = 0.2, coupling_angle_coverage: float = 90.0, length_x: float = 0.0, cross_section_inner: CrossSectionSpec = 'strip', cross_section_outer: CrossSectionSpec = 'strip', bend: ~collections.abc.Callable[[...], ~gdsfactory.component.Component | ~gdsfactory.component.ComponentAllAngle] = <function bend_circular_all_angle>, bend_output: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight') Component[source]#

Two back-to-back coupler_bend.

Parameters:
  • radius – um.

  • coupler_gap – um.

  • angle_inner – of the inner bend, from beginning to end. Depending on the bend chosen, gap may not be preserved.

  • angle_outer – of the outer bend, from beginning to end. Depending on the bend chosen, gap may not be preserved.

  • coupling_angle_coverage – degrees.

  • length_x – horizontal straight length.

  • cross_section_inner – spec inner bend.

  • cross_section_outer – spec outer bend.

  • bend – for bend.

  • bend_output – for bend.

  • straight – for straight.

import gdsfactory as gf

c = gf.components.coupler_ring_bend(radius=10, coupler_gap=0.2, coupling_angle_coverage=90, length_x=0, cross_section_inner='strip', cross_section_outer='strip', bend_output='bend_euler', straight='straight').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-124.png
gdsfactory.components.rings.disk(radius: float = 10.0, gap: float = 0.2, wrap_angle_deg: float = 180.0, parity: int = 1, cross_section: CrossSectionSpec = 'strip') Component[source]#

Disk Resonator.

Parameters:
  • radius – disk resonator radius.

  • gap – Distance between the bus straight and resonator.

  • wrap_angle_deg – Angle in degrees between 0 and 180. determines how much the bus straight wraps along the resonator. 0 corresponds to a straight bus straight. 180 corresponds to a bus straight wrapped around half of the resonator.

  • parity (1 or -1) – 1, resonator left from bus straight, -1 resonator to the right.

  • cross_section – cross_section spec.

import gdsfactory as gf

c = gf.components.disk(radius=10, gap=0.2, wrap_angle_deg=180, parity=1, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-125.png
gdsfactory.components.rings.disk_heater(radius: float = 10.0, gap: float = 0.2, wrap_angle_deg: float = 180.0, parity: int = 1, cross_section: CrossSectionSpec = 'strip', heater_layer: LayerSpec = 'HEATER', via_stack: ComponentSpec = 'via_stack_heater_mtop', heater_width: float = 5.0, heater_extent: float = 2.0, via_width: float = 10.0, port_orientation: float | None = 90) Component[source]#

Disk Resonator with top metal heater.

Parameters:
  • radius – disk resonator radius.

  • gap – Distance between the bus straight and resonator.

  • wrap_angle_deg – Angle in degrees between 0 and 180. determines how much the bus straight wraps along the resonator. 0 corresponds to a straight bus straight. 180 corresponds to a bus straight wrapped around half of the resonator.

  • parity (1 or -1) – 1, resonator left from bus straight, -1 resonator to the right.

  • cross_section – cross_section spec.

  • heater_layer – layer of the heater.

  • via_stack – via stack component.

  • heater_width – width of the heater.

  • heater_extent – length of heater beyond disk.

  • via_width – size of the square via at the end of the heater.

  • port_orientation – in degrees.

import gdsfactory as gf

c = gf.components.disk_heater(radius=10, gap=0.2, wrap_angle_deg=180, parity=1, cross_section='strip', heater_layer='HEATER', via_stack='via_stack_heater_mtop', heater_width=5, heater_extent=2, via_width=10, port_orientation=90).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-126.png
gdsfactory.components.rings.ring(radius: float = 10.0, width: float = 0.5, angle_resolution: float = 2.5, layer: LayerSpec = 'WG', angle: float | None = 360) Component[source]#

Returns a ring.

Parameters:
  • radius – ring radius.

  • width – of the ring.

  • angle_resolution – number of points per degree.

  • layer – layer.

  • angle – angular coverage of the ring

import gdsfactory as gf

c = gf.components.ring(radius=10, width=0.5, angle_resolution=2.5, layer='WG', angle=360).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-127.png
gdsfactory.components.rings.ring_crow(gaps: tuple[float, ...] = (0.2, 0.2, 0.2, 0.2), radius: tuple[float, ...] = (10.0, 10.0, 10.0), bends: tuple[ComponentSpec, ...] | None = None, ring_cross_sections: tuple[CrossSectionSpec, ...] = ('strip', 'strip', 'strip'), length_x: float = 0, lengths_y: tuple[float, ...] = (0, 0, 0), input_straight_cross_section: CrossSectionSpec | None = None, output_straight_cross_section: CrossSectionSpec | None = None, cross_section: CrossSectionSpec = 'strip') Component[source]#

Coupled ring resonators.

Parameters:
  • gaps – gap between rings.

  • radius – for each ring.

  • bends – bend spec for each ring.

  • ring_cross_sections – cross_section spec for each ring.

  • length_x – ring coupler length.

  • lengths_y – vertical straight length.

  • input_straight_cross_section – cross_section spec for input and output straight. Defaults to cross_section.

  • output_straight_cross_section – cross_section spec for input and output straight. Defaults to cross_section.

  • cross_section – cross_section spec for input and output straight.

--==ct==-- gap[N-1]
 |      |
 sl     sr ring[N-1]
 |      |
--==cb==-- gap[N-2]

    .
    .
    .

--==ct==--
 |      |
 sl     sr lengths_y[1], ring[1]
 |      |
--==cb==-- gap[1]

--==ct==--
 |      |
 sl     sr lengths_y[0], ring[0]
 |      |
--==cb==-- gap[0]

 length_x
import gdsfactory as gf

c = gf.components.ring_crow(gaps=(0.2, 0.2, 0.2, 0.2), radius=(10, 10, 10), ring_cross_sections=('strip', 'strip', 'strip'), length_x=0, lengths_y=(0, 0, 0), cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-128.png
gdsfactory.components.rings.ring_crow_couplers(radius: Sequence[float] = (10.0, 10.0, 10.0), bends: Sequence[ComponentSpec] = ('bend_circular', 'bend_circular', 'bend_circular'), ring_cross_sections: Sequence[CrossSectionSpec] = ('strip', 'strip', 'strip'), couplers: Sequence[ComponentSpec] = ('coupler', 'coupler', 'coupler', 'coupler')) Component[source]#

Coupled ring resonators with coupler components between gaps.

Parameters:
  • radius – for the bend and coupler.

  • bends – bend specs.

  • ring_cross_sections – cross_section for the ring.

  • couplers – coupling component between rings and bus.

--==ct==-- gap[N-1]   <------- couplers[N-1]
 |      |
 sl     sr ring[N-1]
 |      |
--==cb==-- gap[N-2]   <------- couplers[N-2]

    .
    .
    .

--==ct==--
 |      |
 sl     sr lengths_y[1], ring[1]
 |      |
--==cb==-- gap[1]
                       <------- couplers[1]
--==ct==--
 |      |
 sl     sr lengths_y[0], ring[0]
 |      |
--==cb==-- gap[0]      <------- couplers[0]

 length_x
import gdsfactory as gf

c = gf.components.ring_crow_couplers(radius=(10, 10, 10), bends=('bend_circular', 'bend_circular', 'bend_circular'), ring_cross_sections=('strip', 'strip', 'strip'), couplers=('coupler', 'coupler', 'coupler', 'coupler')).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-129.png
gdsfactory.components.rings.ring_double(gap: float = 0.2, radius: float = 10.0, length_x: float = 0.01, length_y: float = 0.01, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', coupler_ring: ComponentSpec = 'coupler_ring', cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns a double bus ring.

two couplers (ct: top, cb: bottom) connected with two vertical straights (sl: left, sr: right)

Parameters:
  • gap – gap between for coupler.

  • radius – for the bend and coupler.

  • length_x – ring coupler length.

  • length_y – vertical straight length.

  • bend – 90 degrees bend spec.

  • straight – straight spec.

  • coupler_ring – ring coupler spec.

  • cross_section – cross_section spec.

     o2──────▲─────────o3
             │gap_top
     xx──────▼─────────xxx
    xxx                   xxx
  xxx                       xxx
 xx                           xxx
 x                             xxx
xx                              xx▲
xx                              xx│length_y
xx                              xx▼
xx                             xx
 xx          length_x          x
  xx     ◄───────────────►    x
   xx                       xxx
     xx                   xxx
      xxx──────▲─────────xxx
               │gap
       o1──────▼─────────o4
import gdsfactory as gf

c = gf.components.ring_double(gap=0.2, radius=10, length_x=0.01, length_y=0.01, bend='bend_euler', straight='straight', coupler_ring='coupler_ring', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-130.png
gdsfactory.components.rings.ring_double_bend_coupler(radius: float = 5.0, gap: float = 0.2, coupling_angle_coverage: float = 70.0, bend: ~collections.abc.Callable[[...], ~gdsfactory.component.ComponentAllAngle] = <function bend_circular_all_angle>, length_x: float = 0.6, length_y: float = 0.6, cross_section_inner: CrossSectionSpec = 'strip', cross_section_outer: CrossSectionSpec = 'strip') Component[source]#

Returns ring with double curved couplers.

Parameters:
  • radius – um.

  • gap – um.

  • coupling_angle_coverage – degrees.

  • bend – for bend.

  • length_x – horizontal straight length.

  • length_y – vertical straight length.

  • cross_section_inner – spec inner bend.

  • cross_section_outer – spec outer bend.

import gdsfactory as gf

c = gf.components.ring_double_bend_coupler(radius=5, gap=0.2, coupling_angle_coverage=70, length_x=0.6, length_y=0.6, cross_section_inner='strip', cross_section_outer='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-131.png
gdsfactory.components.rings.ring_double_heater(gap: float = 0.2, radius: float = 10.0, length_x: float = 1.0, length_y: float = 0.01, coupler_ring: ComponentSpec = 'coupler_ring', coupler_ring_top: ComponentSpec | None = None, straight: ComponentSpec = 'straight', bend: ComponentSpec = 'bend_euler', cross_section_heater: CrossSectionSpec = 'heater_metal', cross_section_waveguide_heater: CrossSectionSpec = 'strip_heater_metal', cross_section: CrossSectionSpec = 'strip', via_stack: ComponentSpec = 'via_stack_heater_mtop_mini', port_orientation: AngleInDegrees | None = None, via_stack_offset: Float2 = (1, 0), with_drop: bool = True) Component[source]#

Returns a double bus ring with heater on top.

two couplers (ct: top, cb: bottom) connected with two vertical straights (sl: left, sr: right)

Parameters:
  • gap – gap between for coupler.

  • radius – for the bend and coupler.

  • length_x – ring coupler length.

  • length_y – vertical straight length.

  • coupler_ring – ring coupler spec.

  • coupler_ring_top – ring coupler spec for coupler away from vias (defaults to coupler_ring)

  • straight – straight spec.

  • bend – bend spec.

  • cross_section_heater – for heater.

  • cross_section_waveguide_heater – for waveguide with heater.

  • cross_section – for regular waveguide.

  • via_stack – for heater to routing metal.

  • port_orientation – for electrical ports to promote from via_stack.

  • via_stack_offset – x,y offset for via_stack.

  • with_drop – adds drop ports.

     o2──────▲─────────o3
             │gap_top
     xx──────▼─────────xxx
    xxx                   xxx
  xxx                       xxx
 xx                           xxx
 x                             xxx
xx                              xx▲
xx                              xx│length_y
xx                              xx▼
xx                             xx
 xx          length_x          x
  xx     ◄───────────────►    x
   xx                       xxx
     xx                   xxx
      xxx──────▲─────────xxx
               │gap
       o1──────▼─────────o4
import gdsfactory as gf

c = gf.components.ring_double_heater(gap=0.2, radius=10, length_x=1, length_y=0.01, coupler_ring='coupler_ring', straight='straight', bend='bend_euler', cross_section_heater='heater_metal', cross_section_waveguide_heater='strip_heater_metal', cross_section='strip', via_stack='via_stack_heater_mtop_mini', via_stack_offset=(1, 0), with_drop=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-132.png
gdsfactory.components.rings.ring_double_pn(add_gap: float = 0.3, drop_gap: float = 0.3, radius: float = 5.0, doping_angle: float = 85, cross_section: CrossSectionFactory = <function rib>, pn_cross_section: CrossSectionFactory = functools.partial(<function pn>, width_doping=2.425, width_slab=4.85, layer_via='VIAC', width_via=0.5, layer_metal='M1', width_metal=0.5), doped_heater: bool = True, doped_heater_angle_buffer: float = 10, doped_heater_layer: LayerSpec = 'NPP', doped_heater_width: float = 0.5, doped_heater_waveguide_offset: float = 2.175, heater_vias: ComponentSpec = functools.partial(<function via_stack>, size=(0.5, 0.5), layers=('M1', 'M2', 'M3'), vias=(functools.partial(<function via>, layer='VIAC', size=(0.1, 0.1), enclosure=0.1, pitch=0.2), functools.partial(<function via>, layer='VIA1', size=(0.1, 0.1), enclosure=0.1, pitch=0.2), None)), with_drop: bool = True, **kwargs: ~typing.Any) Component[source]#

Returns add-drop pn ring with optional doped heater.

Parameters:
  • add_gap – gap to add waveguide.

  • drop_gap – gap to drop waveguide.

  • radius – for the bend and coupler.

  • doping_angle – angle in degrees representing portion of ring that is doped.

  • length_x – ring coupler length.

  • length_y – vertical straight length.

  • cross_section – cross_section spec for non-PN doped rib waveguide sections.

  • pn_cross_section – cross section of pn junction.

  • doped_heater – boolean for if we include doped heater or not.

  • doped_heater_angle_buffer – angle in degrees buffering heater from pn junction.

  • doped_heater_layer – doping layer for heater.

  • doped_heater_width – width of doped heater.

  • doped_heater_waveguide_offset – distance from the center of the ring waveguide to the center of the doped heater.

  • heater_vias – components specifications for heater vias

  • with_drop – boolean for if we include drop waveguide or not.

  • kwargs – cross_section settings.

import gdsfactory as gf

c = gf.components.ring_double_pn(add_gap=0.3, drop_gap=0.3, radius=5, doping_angle=85, doped_heater=True, doped_heater_angle_buffer=10, doped_heater_layer='NPP', doped_heater_width=0.5, doped_heater_waveguide_offset=2.175, with_drop=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-133.png
gdsfactory.components.rings.ring_single(gap: float = 0.2, radius: float = 10.0, length_x: float = 4.0, length_y: float = 0.6, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', coupler_ring: ComponentSpec = 'coupler_ring', cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns a single ring.

ring coupler (cb: bottom) connects to two vertical straights (sl: left, sr: right), two bends (bl, br) and horizontal straight (wg: top)

Parameters:
  • gap – gap between for coupler.

  • radius – for the bend and coupler.

  • length_x – ring coupler length.

  • length_y – vertical straight length.

  • coupler_ring – ring coupler spec.

  • bend – 90 degrees bend spec.

  • straight – straight spec.

  • coupler_ring – ring coupler spec.

  • cross_section – cross_section spec.

          xxxxxxxxxxxxx
      xxxxx           xxxx
    xxx                   xxx
  xxx                       xxx
 xx                           xxx
 x                             xxx
xx                              xx▲
xx                              xx│length_y
xx                              xx▼
xx                             xx
 xx          length_x          x
  xx     ◄───────────────►    x
   xx                       xxx
     xx                   xxx
      xxx──────▲─────────xxx
               │gap
       o1──────▼─────────o2
import gdsfactory as gf

c = gf.components.ring_single(gap=0.2, radius=10, length_x=4, length_y=0.6, bend='bend_euler', straight='straight', coupler_ring='coupler_ring', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-134.png
gdsfactory.components.rings.ring_single_array(ring: ComponentSpec = 'ring_single', spacing: float = 5.0, list_of_dicts: tuple[dict[str, Any], ...] | None = None, cross_section: CrossSectionSpec = 'strip') Component[source]#

Ring of single bus connected with straights.

Parameters:
  • ring – ring function.

  • spacing – between rings.

  • list_of_dicts – settings for each ring.

  • cross_section – spec.

  ______               ______
 |      |             |      |
 |      |  length_y   |      |
 |      |             |      |
--======-- spacing ----==gap==--

 length_x
import gdsfactory as gf

c = gf.components.ring_single_array(ring='ring_single', spacing=5, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-135.png
gdsfactory.components.rings.ring_single_bend_coupler(radius: float = 5.0, gap: float = 0.2, coupling_angle_coverage: float = 180.0, bend_all_angle: ~collections.abc.Callable[[...], ~gdsfactory.component.Component | ~gdsfactory.component.ComponentAllAngle] = <function bend_circular_all_angle>, bend: ComponentSpec = 'bend_circular', bend_output: ComponentSpec = 'bend_euler', length_x: float = 0.6, length_y: float = 0.6, cross_section_inner: CrossSectionSpec = 'strip', cross_section_outer: CrossSectionSpec = 'strip', **kwargs: ~typing.Any) Component[source]#

Returns ring with curved coupler.

TODO: enable euler bends.

Parameters:
  • radius – um.

  • gap – um.

  • coupling_angle_coverage – degrees.

  • angle_inner – of the inner bend, from beginning to end. Depending on the bend chosen, gap may not be preserved.

  • angle_outer – of the outer bend, from beginning to end. Depending on the bend chosen, gap may not be preserved.

  • bend_all_angle – for bend.

  • bend – for bend.

  • bend_output – for bend.

  • length_x – horizontal straight length.

  • length_y – vertical straight length.

  • cross_section_inner – spec inner bend.

  • cross_section_outer – spec outer bend.

  • kwargs – cross_section settings.

import gdsfactory as gf

c = gf.components.ring_single_bend_coupler(radius=5, gap=0.2, coupling_angle_coverage=180, bend='bend_circular', bend_output='bend_euler', length_x=0.6, length_y=0.6, cross_section_inner='strip', cross_section_outer='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-136.png
gdsfactory.components.rings.ring_single_dut(component: ComponentSpec = 'straight', gap: float = 0.2, length_x: float = 4, length_y: float = 0, radius: float = 5.0, coupler: ComponentSpec = 'coupler_ring', bend: ComponentSpec = 'bend_euler', with_component: bool = True, port_name: str = 'o1', **kwargs: Any) Component[source]#

Single bus ring made of two couplers (ct: top, cb: bottom) connected.

with two vertical straights (wyl: left, wyr: right) (Component Under Test) in the middle to extract loss from quality factor.

Parameters:
  • component – device under test.

  • gap – in um.

  • length_x – in um.

  • length_y – in um.

  • radius – in um.

  • coupler – coupler function.

  • bend – bend function.

  • with_component – True adds component. False adds waveguide.

  • port_name – for component input.

  • kwargs – cross_section settings.

  • with_component – if False changes component for just a straight.

 bl-wt-br
 |      | length_y
 wl     component
 |      |
--==cb==-- gap

 length_x
import gdsfactory as gf

c = gf.components.ring_single_dut(component='straight', gap=0.2, length_x=4, length_y=0, radius=5, coupler='coupler_ring', bend='bend_euler', with_component=True, port_name='o1').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-137.png
gdsfactory.components.rings.ring_single_heater(gap: float = 0.2, radius: float = 10.0, length_x: float = 1.0, length_y: float = 0.01, coupler_ring: ComponentSpec = 'coupler_ring', coupler_ring_top: ComponentSpec | None = None, straight: ComponentSpec = 'straight', bend: ComponentSpec = 'bend_euler', cross_section_heater: CrossSectionSpec = 'heater_metal', cross_section_waveguide_heater: CrossSectionSpec = 'strip_heater_metal', cross_section: CrossSectionSpec = 'strip', via_stack: ComponentSpec = 'via_stack_heater_mtop_mini', port_orientation: AngleInDegrees | None = None, via_stack_offset: Float2 = (1, 0), *, with_drop: bool = False) Component#

Returns a double bus ring with heater on top.

two couplers (ct: top, cb: bottom) connected with two vertical straights (sl: left, sr: right)

Parameters:
  • gap – gap between for coupler.

  • radius – for the bend and coupler.

  • length_x – ring coupler length.

  • length_y – vertical straight length.

  • coupler_ring – ring coupler spec.

  • coupler_ring_top – ring coupler spec for coupler away from vias (defaults to coupler_ring)

  • straight – straight spec.

  • bend – bend spec.

  • cross_section_heater – for heater.

  • cross_section_waveguide_heater – for waveguide with heater.

  • cross_section – for regular waveguide.

  • via_stack – for heater to routing metal.

  • port_orientation – for electrical ports to promote from via_stack.

  • via_stack_offset – x,y offset for via_stack.

  • with_drop – adds drop ports.

     o2──────▲─────────o3
             │gap_top
     xx──────▼─────────xxx
    xxx                   xxx
  xxx                       xxx
 xx                           xxx
 x                             xxx
xx                              xx▲
xx                              xx│length_y
xx                              xx▼
xx                             xx
 xx          length_x          x
  xx     ◄───────────────►    x
   xx                       xxx
     xx                   xxx
      xxx──────▲─────────xxx
               │gap
       o1──────▼─────────o4
import gdsfactory as gf

c = gf.components.ring_single_heater(gap=0.2, radius=10, length_x=1, length_y=0.01, coupler_ring='coupler_ring', straight='straight', bend='bend_euler', cross_section_heater='heater_metal', cross_section_waveguide_heater='strip_heater_metal', cross_section='strip', via_stack='via_stack_heater_mtop_mini', via_stack_offset=(1, 0), with_drop=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-138.png
gdsfactory.components.rings.ring_single_pn(gap: float = 0.3, radius: float = 5.0, doping_angle: float = 250, cross_section: CrossSectionSpec = <function rib>, pn_cross_section: CrossSectionSpec = functools.partial(<function pn>, width_doping=2.425, width_slab=4.85, layer_via='VIAC', width_via=0.5, layer_metal='M1', width_metal=0.5), doped_heater: bool = True, doped_heater_angle_buffer: float = 10, doped_heater_layer: LayerSpec = 'NPP', doped_heater_width: float = 0.5, doped_heater_waveguide_offset: float = 1.175, heater_vias: ComponentSpec = functools.partial(<function via_stack>, size=(0.5, 0.5), layers=('M1', 'M2', 'M3'), vias=(functools.partial(<function via>, layer='VIAC', size=(0.1, 0.1), enclosure=0.1, pitch=0.2), functools.partial(<function via>, layer='VIA1', size=(0.1, 0.1), enclosure=0.1, pitch=0.2), None)), pn_vias: ComponentSpec = 'via_stack_slab_m3', pn_vias_width: float = 3) Component[source]#

Returns single pn ring with optional doped heater.

Parameters:
  • gap – gap between for coupler.

  • radius – for the bend and coupler.

  • doping_angle – angle in degrees representing portion of ring that is doped.

  • length_x – ring coupler length.

  • length_y – vertical straight length.

  • cross_section – cross_section spec for non-PN doped rib waveguide sections.

  • pn_cross_section – cross section of pn junction.

  • doped_heater – boolean for if we include doped heater or not.

  • doped_heater_angle_buffer – angle in degrees buffering heater from pn junction.

  • doped_heater_layer – doping layer for heater.

  • doped_heater_width – width of doped heater.

  • doped_heater_waveguide_offset – distance from the center of the ring waveguide to the center of the doped heater.

  • heater_vias – components specifications for heater vias.

  • pn_vias – components specifications for pn vias.

  • pn_vias_width – width of pn vias.

import gdsfactory as gf

c = gf.components.ring_single_pn(gap=0.3, radius=5, doping_angle=250, doped_heater=True, doped_heater_angle_buffer=10, doped_heater_layer='NPP', doped_heater_width=0.5, doped_heater_waveguide_offset=1.175, pn_vias='via_stack_slab_m3', pn_vias_width=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-139.png

shapes#

gdsfactory.components.shapes.C(width: float = 1.0, size: tuple[float, float] = (10.0, 20.0), layer: LayerSpec = 'WG', port_type: str = 'electrical') Component[source]#

C geometry with ports on both ends.

based on phidl.

Parameters:
  • width – of the line.

  • size – length and height of the base.

  • layer – layer spec.

  • port_type – optical or electrical.

 ______
|       o1
|   ___
|  |
|  |___
||<---> size[0]
|______ o2
import gdsfactory as gf

c = gf.components.C(width=1, size=(10, 20), layer='WG', port_type='electrical').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-140.png
gdsfactory.components.shapes.L(width: int | float = 1, size: tuple[int, int] = (10, 20), layer: LayerSpec = 'MTOP', port_type: str = 'electrical') Component[source]#

Generates an ‘L’ geometry with ports on both ends.

Based on phidl.

Parameters:
  • width – of the line.

  • size – length and height of the base.

  • layer – spec.

  • port_type – for port.

import gdsfactory as gf

c = gf.components.L(width=1, size=(10, 20), layer='MTOP', port_type='electrical').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-141.png
gdsfactory.components.shapes.circle(radius: float = 10.0, angle_resolution: float = 2.5, layer: LayerSpec = 'WG') Component[source]#

Generate a circle geometry.

Parameters:
  • radius – of the circle.

  • angle_resolution – number of degrees per point.

  • layer – layer.

import gdsfactory as gf

c = gf.components.circle(radius=10, angle_resolution=2.5, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-142.png
gdsfactory.components.shapes.compass(size: tuple[float, float] = (4.0, 2.0), layer: LayerSpec = 'WG', port_type: str | None = 'electrical', port_inclusion: float = 0.0, port_orientations: tuple[int, ...] | list[int] | None = (180, 90, 0, -90), auto_rename_ports: bool = True) Component[source]#

Rectangle with ports on each edge (north, south, east, and west).

Parameters:
  • size – rectangle size.

  • layer – tuple (int, int).

  • port_type – optical, electrical.

  • port_inclusion – from edge.

  • port_orientations – list of port_orientations to add. None does not add ports.

  • auto_rename_ports – auto rename ports.

import gdsfactory as gf

c = gf.components.compass(size=(4, 2), layer='WG', port_type='electrical', port_inclusion=0, port_orientations=(180, 90, 0, -90), auto_rename_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-143.png
gdsfactory.components.shapes.cross(length: float = 10.0, width: float = 3.0, layer: LayerSpec = 'WG', port_type: str | None = None) Component[source]#

Returns a cross from two rectangles of length and width.

Parameters:
  • length – float Length of the cross from one end to the other.

  • width – float Width of the arms of the cross.

  • layer – layer for geometry.

  • port_type – None, optical, electrical.

import gdsfactory as gf

c = gf.components.cross(length=10, width=3, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-144.png
gdsfactory.components.shapes.ellipse(radii: tuple[float, float] = (10.0, 5.0), angle_resolution: float = 2.5, layer: LayerSpec = 'WG') Component[source]#

Returns ellipse component.

Parameters:
  • radii – Semimajor and semiminor axis lengths of the ellipse.

  • angle_resolution – number of degrees per point.

  • layer – Specific layer(s) to put polygon geometry on.

The orientation of the ellipse is determined by the order of the radii variables; if the first element is larger, the ellipse will be horizontal and if the second element is larger, the ellipse will be vertical.

import gdsfactory as gf

c = gf.components.ellipse(radii=(10, 5), angle_resolution=2.5, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-145.png
gdsfactory.components.shapes.fiducial_squares(layers: Layers = ((1, 0),), size: tuple[float, float] = (5, 5), offset: float = 0.14) Component[source]#

Returns fiducials with two squares.

Parameters:
  • layers – list of layers.

  • size – in um.

  • offset – in um.

import gdsfactory as gf

c = gf.components.fiducial_squares(layers=((1, 0),), size=(5, 5), offset=0.14).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-146.png
gdsfactory.components.shapes.hexagon(*, sides: int = 6, side_length: float = 10, layer: LayerSpec = 'WG', port_type: str | None = 'placement') Component#

Returns a regular N-sided polygon, with ports on each edge.

Parameters:
  • sides – number of sides for the polygon.

  • side_length – of the edges.

  • layer – Specific layer to put polygon geometry on.

  • port_type – optical, electrical.

import gdsfactory as gf

c = gf.components.hexagon(sides=6, side_length=10, layer='WG', port_type='placement').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-147.png
gdsfactory.components.shapes.marker_te(*, size: Size = (10.4, 10.4), layer: LayerSpec = 'TE', centered: bool = True, port_type: str | None = 'electrical', port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Returns a rectangle.

Parameters:
  • size – (tuple) Width and height of rectangle.

  • layer – Specific layer to put polygon geometry on.

  • centered – True sets center to (0, 0), False sets south-west to (0, 0).

  • port_type – optical, electrical.

  • port_orientations – list of port_orientations to add. None adds no ports.

import gdsfactory as gf

c = gf.components.marker_te(size=(10.4, 10.4), layer='TE', centered=True, port_type='electrical', port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-148.png
gdsfactory.components.shapes.marker_tm(*, size: Size = (10.4, 10.4), layer: LayerSpec = 'TM', centered: bool = True, port_type: str | None = 'electrical', port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Returns a rectangle.

Parameters:
  • size – (tuple) Width and height of rectangle.

  • layer – Specific layer to put polygon geometry on.

  • centered – True sets center to (0, 0), False sets south-west to (0, 0).

  • port_type – optical, electrical.

  • port_orientations – list of port_orientations to add. None adds no ports.

import gdsfactory as gf

c = gf.components.marker_tm(size=(10.4, 10.4), layer='TM', centered=True, port_type='electrical', port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-149.png
gdsfactory.components.shapes.nxn(west: int = 1, east: int = 4, north: int = 0, south: int = 0, xsize: float = 8.0, ysize: float = 8.0, wg_width: float = 0.5, layer: LayerSpec = 'WG', wg_margin: float = 1.0, **kwargs: Any) Component[source]#

Returns a nxn component with nxn ports (west, east, north, south).

Parameters:
  • west – number of west ports.

  • east – number of east ports.

  • north – number of north ports.

  • south – number of south ports.

  • xsize – size in X.

  • ysize – size in Y.

  • wg_width – width of the straight ports.

  • layer – layer.

  • wg_margin – margin from straight to component edge.

  • kwargs – port_settings.

    3   4
    |___|_
2 -|      |- 5
   |      |
1 -|______|- 6
    |   |
    8   7
import gdsfactory as gf

c = gf.components.nxn(west=1, east=4, north=0, south=0, xsize=8, ysize=8, wg_width=0.5, layer='WG', wg_margin=1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-150.png
gdsfactory.components.shapes.octagon(*, sides: int = 8, side_length: float = 10, layer: LayerSpec = 'WG', port_type: str | None = 'placement') Component#

Returns a regular N-sided polygon, with ports on each edge.

Parameters:
  • sides – number of sides for the polygon.

  • side_length – of the edges.

  • layer – Specific layer to put polygon geometry on.

  • port_type – optical, electrical.

import gdsfactory as gf

c = gf.components.octagon(sides=8, side_length=10, layer='WG', port_type='placement').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-151.png
gdsfactory.components.shapes.rectangle(size: tuple[float, float] = (4.0, 2.0), layer: LayerSpec = 'WG', centered: bool = False, port_type: str | None = 'electrical', port_orientations: tuple[int, ...] | list[int] | None = (180, 90, 0, -90)) Component[source]#

Returns a rectangle.

Parameters:
  • size – (tuple) Width and height of rectangle.

  • layer – Specific layer to put polygon geometry on.

  • centered – True sets center to (0, 0), False sets south-west to (0, 0).

  • port_type – optical, electrical.

  • port_orientations – list of port_orientations to add. None adds no ports.

import gdsfactory as gf

c = gf.components.rectangle(size=(4, 2), layer='WG', centered=False, port_type='electrical', port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-152.png
gdsfactory.components.shapes.rectangles(size: tuple[float, float] = (4.0, 2.0), offsets: Sequence[float] | None = None, layers: LayerSpecs = ('WG', 'SLAB150'), centered: bool = True, **kwargs: Any) Component[source]#

Returns overimposed rectangles.

Parameters:
  • size – (tuple) Width and height of rectangle.

  • layers – Specific layer to put polygon geometry on.

  • offsets – list of offsets. If None, all rectangles have a zero offset.

  • centered – True sets center to (0, 0), False sets south-west of first rectangle to (0, 0).

  • kwargs – additional arguments to pass to rectangle.

Keyword Arguments:
  • port_type – optical, electrical.

  • port_orientations – list of port_orientations to add.

┌──────────────┐
│              │
│   ┌──────┐   │
│   │      │   │
│   │      ├───►
│   │      │offset
│   └──────┘   │
│              │
└──────────────┘
import gdsfactory as gf

c = gf.components.rectangles(size=(4, 2), layers=('WG', 'SLAB150'), centered=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-153.png
gdsfactory.components.shapes.regular_polygon(sides: int = 6, side_length: float = 10, layer: LayerSpec = 'WG', port_type: str | None = 'placement') Component[source]#

Returns a regular N-sided polygon, with ports on each edge.

Parameters:
  • sides – number of sides for the polygon.

  • side_length – of the edges.

  • layer – Specific layer to put polygon geometry on.

  • port_type – optical, electrical.

import gdsfactory as gf

c = gf.components.regular_polygon(sides=6, side_length=10, layer='WG', port_type='placement').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-154.png
gdsfactory.components.shapes.triangle(x: float = 10, xtop: float = 0, y: float = 20, ybot: float = 0, layer: LayerSpec = 'WG') Component[source]#

Return triangle.

Parameters:
  • x – base xsize.

  • xtop – top xsize.

  • y – ysize.

  • ybot – bottom ysize.

  • layer – layer.

xtop
   _
  | \
  |  \
  |   \
 y|    \
  |     \
  |      \
  |______|ybot
      x
import gdsfactory as gf

c = gf.components.triangle(x=10, xtop=0, y=20, ybot=0, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-155.png
gdsfactory.components.shapes.triangle2(spacing: float = 3, **kwargs: Any) Component[source]#

Return 2 triangles (bot, top).

Parameters:
  • spacing – between top and bottom.

  • kwargs – triangle arguments.

Keyword Arguments:
  • x – base xsize.

  • xtop – top xsize.

  • y – ysize.

  • ybot – bottom ysize.

  • layer – layer.

 _
| \
|  \
|   \
|    \
|     \
|      \
|       \
|       |  spacing
|      /
|     /
|    /
|   /
|  /
|_/
import gdsfactory as gf

c = gf.components.triangle2(spacing=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-156.png
gdsfactory.components.shapes.triangle2_thin(spacing: float = 3, **kwargs: Any) Component#

Return 2 triangles (bot, top).

Parameters:
  • spacing – between top and bottom.

  • kwargs – triangle arguments.

Keyword Arguments:
  • x – base xsize.

  • xtop – top xsize.

  • y – ysize.

  • ybot – bottom ysize.

  • layer – layer.

 _
| \
|  \
|   \
|    \
|     \
|      \
|       \
|       |  spacing
|      /
|     /
|    /
|   /
|  /
|_/
import gdsfactory as gf

c = gf.components.triangle2_thin(spacing=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-157.png
gdsfactory.components.shapes.triangle4(**kwargs: Any) Component[source]#

Return 4 triangles.

Parameters:

kwargs – triangle arguments.

Keyword Arguments:
  • x – base xsize.

  • xtop – top xsize.

  • y – ysize.

  • ybot – bottom ysize.

  • layer – layer.

      / | \
     /  |  \
    /   |   \
   /    |    \
  /     |     \
 /      |      \
/       |       \
|       |       |
\       |      /
 \      |     /
  \     |    /
   \    |   /
    \   |  /
     \  |_/
import gdsfactory as gf

c = gf.components.triangle4().copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-158.png
gdsfactory.components.shapes.triangle4_thin(spacing: float = 3, **kwargs: Any) Component#

Return 2 triangles (bot, top).

Parameters:
  • spacing – between top and bottom.

  • kwargs – triangle arguments.

Keyword Arguments:
  • x – base xsize.

  • xtop – top xsize.

  • y – ysize.

  • ybot – bottom ysize.

  • layer – layer.

 _
| \
|  \
|   \
|    \
|     \
|      \
|       \
|       |  spacing
|      /
|     /
|    /
|   /
|  /
|_/
import gdsfactory as gf

c = gf.components.triangle4_thin(spacing=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-159.png
gdsfactory.components.shapes.triangle_thin(*, x: float = 2, xtop: float = 0.2, y: float = 5, ybot: float = 0, layer: LayerSpec = 'WG') Component#

Return triangle.

Parameters:
  • x – base xsize.

  • xtop – top xsize.

  • y – ysize.

  • ybot – bottom ysize.

  • layer – layer.

xtop
   _
  | \
  |  \
  |   \
 y|    \
  |     \
  |      \
  |______|ybot
      x
import gdsfactory as gf

c = gf.components.triangle_thin(x=2, xtop=0.2, y=5, ybot=0, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-160.png

spirals#

gdsfactory.components.spirals.delay_snake(length: float = 1600.0, length0: float = 0.0, length2: float = 0.0, n: int = 2, bend180: ComponentSpec = functools.partial(<function bend_euler>, angle=180), cross_section: CrossSectionSpec = 'strip', width: float | None = None) Component[source]#

Returns Snake with a starting bend and 180 bends.

Parameters:
  • length – total length.

  • length0 – start length.

  • length2 – end length.

  • n – number of loops.

  • bend180 – ubend spec.

  • cross_section – cross_section spec.

  • width – width of the waveguide. If None, it will use the width of the cross_section.

          | length0   |

          >---------\
                     \bend180.info['length']
                     /
|-------------------/
|
|------------------->------->|
                     length2
|   delta_length    |        |
import gdsfactory as gf

c = gf.components.delay_snake(length=1600, length0=0, length2=0, n=2, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-161.png
gdsfactory.components.spirals.delay_snake2(length: float = 1600.0, length0: float = 0.0, length2: float = 0.0, n: int = 2, bend180: ComponentSpec = 'bend_euler180', cross_section: CrossSectionSpec = 'strip', width: float | None = None) Component[source]#

Returns Snake with a starting straight and 180 bends.

Input faces west output faces east.

Parameters:
  • length – total length.

  • length0 – start length.

  • length2 – end length.

  • n – number of loops.

  • bend180 – ubend spec.

  • cross_section – cross_section spec.

  • width – width of the waveguide. If None, it will use the width of the cross_section.

| length0 | length1 |

          >---------|
                    | bend180.length
|-------------------|
|
|------------------->------- |
                     length2
|   delta_length    |        |
import gdsfactory as gf

c = gf.components.delay_snake2(length=1600, length0=0, length2=0, n=2, bend180='bend_euler180', cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-162.png
gdsfactory.components.spirals.delay_snake_sbend(length: float = 100.0, length1: float = 0.0, length4: float = 0.0, radius: float = 5.0, waveguide_spacing: float = 5.0, bend: ComponentSpec = 'bend_euler', sbend: ComponentSpec = 'bend_s', sbend_xsize: float = 100.0, cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns compact Snake with sbend in the middle.

Input port faces west and output port faces east.

Parameters:
  • length – total length.

  • length1 – first straight section length in um.

  • length4 – fourth straight section length in um.

  • radius – u bend radius in um.

  • waveguide_spacing – waveguide pitch in um.

  • bend – bend spec.

  • sbend – sbend spec.

  • sbend_xsize – sbend size.

  • cross_section – cross_section spec.

                 length1
 <----------------------------
       length2    spacing    |
        _______              |
       |        \            |
       |          \          | bend1 radius
       |            \sbend   |
  bend2|              \      |
       |                \    |
       |                  \__|
       |
       ---------------------->----------->
           length3              length4

We adjust length2 and length3
import gdsfactory as gf

c = gf.components.delay_snake_sbend(length=100, length1=0, length4=0, radius=5, waveguide_spacing=5, bend='bend_euler', sbend='bend_s', sbend_xsize=100, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-163.png
gdsfactory.components.spirals.spiral(length: float = 100, bend: ComponentSpec = 'bend_euler', straight: ComponentSpec = 'straight', cross_section: ComponentSpec = 'strip', spacing: float = 3.0, n_loops: int = 6) Component[source]#

Returns a spiral double (spiral in, and then out).

Parameters:
  • length – length of the spiral straight section.

  • bend – bend component.

  • straight – straight component.

  • cross_section – cross_section component.

  • spacing – spacing between the spiral loops.

  • n_loops – number of loops.

import gdsfactory as gf

c = gf.components.spiral(length=100, bend='bend_euler', straight='straight', cross_section='strip', spacing=3, n_loops=6).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-164.png
gdsfactory.components.spirals.spiral_double(min_bend_radius: float = 10.0, separation: float = 2.0, number_of_loops: float = 3, npoints: int = 1000, cross_section: CrossSectionSpec = 'strip', bend: ComponentSpec = 'bend_circular') Component[source]#

Returns a spiral double (spiral in, and then out).

Parameters:
  • min_bend_radius – inner radius of the spiral.

  • separation – separation between the loops.

  • number_of_loops – number of loops per spiral.

  • npoints – points for the spiral.

  • cross_section – cross-section to extrude the structure with.

  • bend – factory for the bends in the middle of the double spiral.

import gdsfactory as gf

c = gf.components.spiral_double(min_bend_radius=10, separation=2, number_of_loops=3, npoints=1000, cross_section='strip', bend='bend_circular').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-165.png
gdsfactory.components.spirals.spiral_inductor(width: float = 3.0, pitch: float = 3.0, turns: int = 16, outer_diameter: float = 800, tail: float = 50.0) Component[source]#

Generates a spiral inductor to make superconducting resonator for qubit readout.

See J. M. Hornibrook, J. I. Colless, A. C. Mahoney, X. G. Croot, S. Blanvillain, H. Lu, A. C. Gossard, D. J. Reilly; Frequency multiplexing for readout of spin qubits. Appl. Phys. Lett. 10 March 2014; 104 (10): 103108. https://doi.org/10.1063/1.4868107

Parameters:
  • width – width of the inductor track.

  • pitch – distance between the inductor tracks.

  • turns – number of full spriral turns.

  • outer_diameter – size of the inductor.

  • tail – length of the inner and outer tail.

import gdsfactory as gf

c = gf.components.spiral_inductor(width=3, pitch=3, turns=16, outer_diameter=800, tail=50).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-166.png
gdsfactory.components.spirals.spiral_racetrack(min_radius: float = 5, straight_length: float = 20.0, spacings: Floats = (2, 2, 3, 3, 2, 2), straight_factory: ComponentFactory = <function straight>, bend_factory: ComponentFactory = <function bend_euler>, bend_s_factory: ComponentFactory = <function bend_s>, cross_section: CrossSectionSpec = 'strip', cross_section_s: CrossSectionSpec | None = None, n_bend_points: int = 99, with_inner_ports: bool = False, extra_90_deg_bend: bool = False, allow_min_radius_violation: bool = True) Component[source]#

Returns Racetrack-Spiral.

Parameters:
  • min_radius – smallest radius in um.

  • straight_length – length of the straight segments in um.

  • spacings – space between the center of neighboring waveguides in um.

  • straight_factory – factory to generate the straight segments.

  • bend_factory – factory to generate the bend segments.

  • bend_s_factory – factory to generate the s-bend segments.

  • cross_section – cross-section of the waveguides.

  • cross_section_s – cross-section of the s bend waveguide (optional).

  • n_bend_points – optional bend points.

  • with_inner_ports – if True, will build the spiral, but expose the inner ports where the S-bend would be.

  • extra_90_deg_bend – if True, we add an additional straight + 90 degree bent at the output, so the output port is looking down.

  • allow_min_radius_violation – if True, will allow the s-bend to have a smaller radius than the minimum radius.

import gdsfactory as gf

c = gf.components.spiral_racetrack(min_radius=5, straight_length=20, spacings=(2, 2, 3, 3, 2, 2), cross_section='strip', n_bend_points=99, with_inner_ports=False, extra_90_deg_bend=False, allow_min_radius_violation=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-167.png
gdsfactory.components.spirals.spiral_racetrack_fixed_length(length: float = 1000, in_out_port_spacing: float = 150, n_straight_sections: int = 8, min_radius: float = 5, min_spacing: float = 5.0, straight_factory: ComponentFactory = <function straight>, bend_factory: ComponentFactory = <function bend_euler>, bend_s_factory: ComponentFactory = <function bend_s>, cross_section: CrossSectionSpec = 'strip', cross_section_s: CrossSectionSpec | None = None, n_bend_points: int = 99, with_inner_ports: bool = False) Component[source]#

Returns Racetrack-Spiral with a specified total length.

The input and output ports are aligned in y. This class is meant to be used for generating interferometers with long waveguide lengths, where the most important parameter is the length difference between the arms.

Parameters:
  • length – total length of the spiral from input to output ports in um.

  • in_out_port_spacing – spacing between input and output ports of the spiral in um.

  • n_straight_sections – total number of straight sections for the racetrack spiral. Has to be even.

  • min_radius – smallest radius in um.

  • min_spacing – minimum center-center spacing between adjacent waveguides.

  • straight_factory – factory to generate the straight segments.

  • bend_factory – factory to generate the bend segments.

  • bend_s_factory – factory to generate the s-bend segments.

  • cross_section – cross-section of the waveguides.

  • cross_section_s – cross-section of the s bend waveguide (optional).

  • n_bend_points – optional bend points.

  • with_inner_ports – if True, will build the spiral, but expose the inner ports where the S-bend would be.

import gdsfactory as gf

c = gf.components.spiral_racetrack_fixed_length(length=1000, in_out_port_spacing=150, n_straight_sections=8, min_radius=5, min_spacing=5, cross_section='strip', n_bend_points=99, with_inner_ports=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-168.png
gdsfactory.components.spirals.spiral_racetrack_heater_doped(min_radius: float | None = None, straight_length: float = 30, spacing: float = 2, num: int = 8, straight_factory: ComponentFactory = <function straight>, bend_factory: ComponentFactory = <function bend_euler>, bend_s_factory: ComponentFactory = <function bend_s>, waveguide_cross_section: CrossSectionSpec = 'strip', heater_cross_section: CrossSectionSpec = 'npp') Component[source]#

Returns spiral racetrack with a heater between the loops.

based on https://doi.org/10.1364/OL.400230 but with the heater between the loops.

Parameters:
  • min_radius – smallest radius in um.

  • straight_length – length of the straight segments in um.

  • spacing – space between the center of neighboring waveguides in um.

  • num – number.

  • straight_factory – factory to generate the straight segments.

  • bend_factory – factory to generate the bend segments.

  • bend_s_factory – factory to generate the s-bend segments.

  • waveguide_cross_section – cross-section of the waveguides.

  • heater_cross_section – cross-section of the heater.

import gdsfactory as gf

c = gf.components.spiral_racetrack_heater_doped(straight_length=30, spacing=2, num=8, waveguide_cross_section='strip', heater_cross_section='npp').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-169.png
gdsfactory.components.spirals.spiral_racetrack_heater_metal(min_radius: float | None = None, straight_length: float = 30, spacing: float = 2, num: int = 8, straight_factory: ComponentFactory = <function straight>, bend_factory: ComponentFactory = <function bend_euler>, bend_s_factory: ComponentFactory = <function bend_s>, waveguide_cross_section: CrossSectionSpec = 'strip', heater_cross_section: CrossSectionSpec = 'heater_metal', via_stack: ComponentSpec | None = 'via_stack_heater_mtop') Component[source]#

Returns spiral racetrack with a heater above.

based on https://doi.org/10.1364/OL.400230 .

Parameters:
  • min_radius – smallest radius.

  • straight_length – length of the straight segments.

  • spacing – space between the center of neighboring waveguides.

  • num – number.

  • straight_factory – factory to generate the straight segments.

  • bend_factory – factory to generate the bend segments.

  • bend_s_factory – factory to generate the s-bend segments.

  • waveguide_cross_section – cross-section of the waveguides.

  • heater_cross_section – cross-section of the heater.

  • via_stack – via stack to connect the heater to the metal layer.

import gdsfactory as gf

c = gf.components.spiral_racetrack_heater_metal(straight_length=30, spacing=2, num=8, waveguide_cross_section='strip', heater_cross_section='heater_metal', via_stack='via_stack_heater_mtop').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-170.png

superconductors#

gdsfactory.components.superconductors.hline(length: float = 10.0, width: float = 0.5, layer: LayerSpec = 'WG', port_type: str = 'optical') Component[source]#

Horizontal line straight, with ports on east and west sides.

import gdsfactory as gf

c = gf.components.hline(length=10, width=0.5, layer='WG', port_type='optical').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-171.png
gdsfactory.components.superconductors.optimal_90deg(width: float = 100, num_pts: int = 15, length_adjust: float = 1, layer: LayerSpec = (1, 0)) Component[source]#

Returns optimally-rounded 90 degree bend that is sharp on the outer corner.

Parameters:
  • width – Width of the ports on either side of the bend.

  • num_pts – The number of points comprising the curved section of the bend.

  • length_adjust – Adjusts the length of the non-curved portion of the bend.

  • layer – Specific layer(s) to put polygon geometry on.

Notes

Optimal structure from https://doi.org/10.1103/PhysRevB.84.174510 Clem, J., & Berggren, K. (2011). Geometry-dependent critical currents in superconducting nanocircuits. Physical Review B, 84(17), 1-27.

import gdsfactory as gf

c = gf.components.optimal_90deg(width=100, num_pts=15, length_adjust=1, layer=(1, 0)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-172.png
gdsfactory.components.superconductors.optimal_hairpin(width: float = 0.2, pitch: float = 0.6, length: float = 10, turn_ratio: float = 4, num_pts: int = 50, layer: LayerSpec = (1, 0)) Component[source]#

Returns an optimally-rounded hairpin geometry, with a 180 degree turn.

based on phidl.geometry

Parameters:
  • width – Width of the hairpin leads.

  • pitch – Distance between the two hairpin leads. Must be greater than width.

  • length – Length of the hairpin from the connectors to the opposite end of the curve.

  • turn_ratio – int or float Specifies how much of the hairpin is dedicated to the 180 degree turn. A turn_ratio of 10 will result in 20% of the hairpin being comprised of the turn.

  • num_pts – Number of points constituting the 180 degree turn.

  • layer – Specific layer(s) to put polygon geometry on.

Notes

Hairpin pitch must be greater than width.

Optimal structure from https://doi.org/10.1103/PhysRevB.84.174510 Clem, J., & Berggren, K. (2011). Geometry-dependent critical currents in superconducting nanocircuits. Physical Review B, 84(17), 1-27.

import gdsfactory as gf

c = gf.components.optimal_hairpin(width=0.2, pitch=0.6, length=10, turn_ratio=4, num_pts=50, layer=(1, 0)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-173.png
gdsfactory.components.superconductors.optimal_step(start_width: float = 10, end_width: float = 22, num_pts: int = 50, width_tol: float = 0.001, anticrowding_factor: float = 1.2, symmetric: bool = False, layer: LayerSpec = (1, 0)) Component[source]#

Returns an optimally-rounded step geometry.

Parameters:
  • start_width – Width of the connector on the left end of the step.

  • end_width – Width of the connector on the right end of the step.

  • num_pts – number of points comprising the entire step geometry.

  • width_tol – Point at which to terminate the calculation of the optimal step

  • anticrowding_factor – Factor to reduce current crowding by elongating the structure and reducing the curvature

  • symmetric – If True, adds a mirrored copy of the step across the x-axis to the geometry and adjusts the width of the ports.

  • layer – layer spec to put polygon geometry on.

based on phidl.geometry Optimal structure from https://doi.org/10.1103/PhysRevB.84.174510 Clem, J., & Berggren, K. (2011). Geometry-dependent critical currents in superconducting nanocircuits. Physical Review B, 84(17), 1-27.

import gdsfactory as gf

c = gf.components.optimal_step(start_width=10, end_width=22, num_pts=50, width_tol=0.001, anticrowding_factor=1.2, symmetric=False, layer=(1, 0)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-174.png
gdsfactory.components.superconductors.snspd(wire_width: float = 0.2, wire_pitch: float = 0.6, size: tuple[float, float] = (10, 8), num_squares: int | None = None, turn_ratio: float = 4, terminals_same_side: bool = False, layer: LayerSpec = (1, 0), port_type: str = 'electrical') Component[source]#

Creates an optimally-rounded SNSPD.

Parameters:
  • wire_width – Width of the wire.

  • wire_pitch – Distance between two adjacent wires. Must be greater than width.

  • size – Float2 (width, height) of the rectangle formed by the outer boundary of the SNSPD.

  • num_squares – int | None = None Total number of squares inside the SNSPD length.

  • turn_ratio – float Specifies how much of the SNSPD width is dedicated to the 180 degree turn. A turn_ratio of 10 will result in 20% of the width being comprised of the turn.

  • terminals_same_side – If True, both ports will be located on the same side of the SNSPD.

  • layer – layer spec to put polygon geometry on.

  • port_type – type of port to add to the component.

import gdsfactory as gf

c = gf.components.snspd(wire_width=0.2, wire_pitch=0.6, size=(10, 8), turn_ratio=4, terminals_same_side=False, layer=(1, 0), port_type='electrical').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-175.png

tapers#

gdsfactory.components.tapers.ramp(length: float = 10.0, width1: float = 5.0, width2: float | None = 8.0, layer: LayerSpec = 'WG') Component[source]#

Return a ramp component.

Based on phidl.

Parameters:
  • length – Length of the ramp section.

  • width1 – Width of the start of the ramp section.

  • width2 – Width of the end of the ramp section (defaults to width1).

  • layer – Specific layer to put polygon geometry on.

import gdsfactory as gf

c = gf.components.ramp(length=10, width1=5, width2=8, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-176.png
gdsfactory.components.tapers.taper(length: float = 10.0, width1: float = 0.5, width2: float | None = None, layer: LayerSpec | None = None, port: Port | None = None, with_two_ports: bool = True, cross_section: CrossSectionSpec = 'strip', port_names: tuple[str, str] = ('o1', 'o2'), port_types: tuple[str, str] = ('optical', 'optical'), with_bbox: bool = True) Component[source]#

Linear taper, which tapers only the main cross section section.

Parameters:
  • length – taper length.

  • width1 – width of the west/left port.

  • width2 – width of the east/right port. Defaults to width1.

  • layer – layer for the taper.

  • port – can taper from a port instead of defining width1.

  • with_two_ports – includes a second port. False for terminator and edge coupler fiber interface.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

  • port_names – input and output port names. Second name only used if with_two_ports.

  • port_types – input and output port types. Second type only used if with_two_ports.

  • with_bbox – box in bbox_layers and bbox_offsets to avoid DRC sharp edges.

import gdsfactory as gf

c = gf.components.taper(length=10, width1=0.5, with_two_ports=True, cross_section='strip', port_names=('o1', 'o2'), port_types=('optical', 'optical'), with_bbox=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-177.png
gdsfactory.components.tapers.taper_0p5_to_3_l36(*, filepath: Path = PosixPath('/home/runner/work/gdsfactory/gdsfactory/gdsfactory/components/tapers/csv_data/taper_strip_0p5_3_36.csv'), cross_section: CrossSectionSpec = 'strip') Component#

Returns taper from CSV file.

Parameters:
  • filepath – for CSV file.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

import gdsfactory as gf

c = gf.components.taper_0p5_to_3_l36(cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-178.png
gdsfactory.components.tapers.taper_adiabatic(width1: float = 0.5, width2: float = 5.0, length: float = 0, neff_w: ~collections.abc.Callable[[float], float] = <function neff_TE1550SOI_220nm>, alpha: float = 1, wavelength: float = 1.55, npoints: int = 200, cross_section: CrossSectionSpec = 'strip', max_length: float = 200) Component[source]#

Returns a straight adiabatic_taper from an effective index callable.

Parameters:
  • width1 – initial width.

  • width2 – final width.

  • length – 0 uses the optimized length, and otherwise the optimal shape is compressed/stretched to the specified length.

  • neff_w – a callable that returns the effective index as a function of width - By default, will use a compact model of neff(y) for fundamental 1550 nm TE mode of 220nm-thick core with 3.45 index, fully clad with 1.44 index. Many coefficients are needed to capture the behaviour.

  • alpha – parameter that scales the rate of width change. - closer to 0 means longer and more adiabatic; - 1 is the intuitive limit beyond which higher order modes are excited; - [2] reports good performance up to 1.4 for fundamental TE in SOI (for multiple core thicknesses)

  • wavelength – wavelength in um.

  • npoints – number of points for sampling.

  • cross_section – cross_section specification.

  • max_length – maximum length for the taper.

References

[1] Burns, W. K., et al. “Optical waveguide parabolic coupling horns.” Appl. Phys. Lett., vol. 30, no. 1, 1 Jan. 1977, pp. 28-30, doi:10.1063/1.89199. [2] Fu, Yunfei, et al. “Efficient adiabatic silicon-on-insulator waveguide taper.” Photonics Res., vol. 2, no. 3, 1 June 2014, pp. A41-A44, doi:10.1364/PRJ.2.000A41. npoints: number of points for sampling

import gdsfactory as gf

c = gf.components.taper_adiabatic(width1=0.5, width2=5, length=0, alpha=1, wavelength=1.55, npoints=200, cross_section='strip', max_length=200).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-179.png
gdsfactory.components.tapers.taper_cross_section(cross_section1: CrossSectionSpec = 'strip_rib_tip', cross_section2: CrossSectionSpec = 'rib2', length: float = 10, npoints: int = 100, linear: bool = False, width_type: str = 'sine') Component[source]#

Returns taper transition between cross_section1 and cross_section2.

Parameters:
  • cross_section1 – start cross_section factory.

  • cross_section2 – end cross_section factory.

  • length – transition length.

  • npoints – number of points.

  • linear – shape of the transition, sine when False.

  • width_type – shape of the transition ONLY IF linear is False

                    _____________________
                   /
           _______/______________________
                 /
cross_section1  |        cross_section2
           ______\_______________________
                  \
                   \_____________________
import gdsfactory as gf

c = gf.components.taper_cross_section(cross_section1='strip_rib_tip', cross_section2='rib2', length=10, npoints=100, linear=False, width_type='sine').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-180.png
gdsfactory.components.tapers.taper_cross_section_linear(cross_section1: CrossSectionSpec = 'strip_rib_tip', cross_section2: CrossSectionSpec = 'rib2', length: float = 10, *, npoints: int = 2, linear: bool = True, width_type: str = 'sine') Component#

Returns taper transition between cross_section1 and cross_section2.

Parameters:
  • cross_section1 – start cross_section factory.

  • cross_section2 – end cross_section factory.

  • length – transition length.

  • npoints – number of points.

  • linear – shape of the transition, sine when False.

  • width_type – shape of the transition ONLY IF linear is False

                    _____________________
                   /
           _______/______________________
                 /
cross_section1  |        cross_section2
           ______\_______________________
                  \
                   \_____________________
import gdsfactory as gf

c = gf.components.taper_cross_section_linear(cross_section1='strip_rib_tip', cross_section2='rib2', length=10, npoints=2, linear=True, width_type='sine').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-181.png
gdsfactory.components.tapers.taper_cross_section_parabolic(cross_section1: CrossSectionSpec = 'strip_rib_tip', cross_section2: CrossSectionSpec = 'rib2', length: float = 10, *, npoints: int = 101, linear: bool = False, width_type: str = 'parabolic') Component#

Returns taper transition between cross_section1 and cross_section2.

Parameters:
  • cross_section1 – start cross_section factory.

  • cross_section2 – end cross_section factory.

  • length – transition length.

  • npoints – number of points.

  • linear – shape of the transition, sine when False.

  • width_type – shape of the transition ONLY IF linear is False

                    _____________________
                   /
           _______/______________________
                 /
cross_section1  |        cross_section2
           ______\_______________________
                  \
                   \_____________________
import gdsfactory as gf

c = gf.components.taper_cross_section_parabolic(cross_section1='strip_rib_tip', cross_section2='rib2', length=10, npoints=101, linear=False, width_type='parabolic').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-182.png
gdsfactory.components.tapers.taper_cross_section_sine(cross_section1: CrossSectionSpec = 'strip_rib_tip', cross_section2: CrossSectionSpec = 'rib2', length: float = 10, *, npoints: int = 101, linear: bool = False, width_type: str = 'sine') Component#

Returns taper transition between cross_section1 and cross_section2.

Parameters:
  • cross_section1 – start cross_section factory.

  • cross_section2 – end cross_section factory.

  • length – transition length.

  • npoints – number of points.

  • linear – shape of the transition, sine when False.

  • width_type – shape of the transition ONLY IF linear is False

                    _____________________
                   /
           _______/______________________
                 /
cross_section1  |        cross_section2
           ______\_______________________
                  \
                   \_____________________
import gdsfactory as gf

c = gf.components.taper_cross_section_sine(cross_section1='strip_rib_tip', cross_section2='rib2', length=10, npoints=101, linear=False, width_type='sine').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-183.png
gdsfactory.components.tapers.taper_electrical(length: float = 10.0, width1: float = 0.5, width2: float | None = None, layer: LayerSpec | None = None, port: Port | None = None, with_two_ports: bool = True, *, cross_section: CrossSectionSpec = 'metal_routing', port_names: tuple[str, str] = ('e1', 'e2'), port_types: tuple[str, str] = ('electrical', 'electrical'), with_bbox: bool = True) Component#

Linear taper, which tapers only the main cross section section.

Parameters:
  • length – taper length.

  • width1 – width of the west/left port.

  • width2 – width of the east/right port. Defaults to width1.

  • layer – layer for the taper.

  • port – can taper from a port instead of defining width1.

  • with_two_ports – includes a second port. False for terminator and edge coupler fiber interface.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

  • port_names – input and output port names. Second name only used if with_two_ports.

  • port_types – input and output port types. Second type only used if with_two_ports.

  • with_bbox – box in bbox_layers and bbox_offsets to avoid DRC sharp edges.

import gdsfactory as gf

c = gf.components.taper_electrical(length=10, width1=0.5, with_two_ports=True, cross_section='metal_routing', port_names=('e1', 'e2'), port_types=('electrical', 'electrical'), with_bbox=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-184.png
gdsfactory.components.tapers.taper_from_csv(filepath: Path = PosixPath('/home/runner/work/gdsfactory/gdsfactory/gdsfactory/components/tapers/csv_data/taper_strip_0p5_3_36.csv'), cross_section: CrossSectionSpec = 'strip') Component[source]#

Returns taper from CSV file.

Parameters:
  • filepath – for CSV file.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

import gdsfactory as gf

c = gf.components.taper_from_csv(cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-185.png
gdsfactory.components.tapers.taper_nc_sc(width1: float = 1, width2: float = 0.5, length: float = 20, layer_wg: LayerSpec = 'WGN', layer_nitride: LayerSpec = 'WG', width_tip_nitride: float = 0.15, width_tip_silicon: float = 0.15, cross_section: CrossSectionSpec = 'strip') Component[source]#

Taper from nitride to strip.

Parameters:
  • width1 – nitride width.

  • width2 – strip width.

  • length – taper length.

  • layer_wg – nitride layer.

  • layer_nitride – strip layer.

  • width_tip_nitride – tip width for nitride.

  • width_tip_silicon – tip width for strip.

  • cross_section – cross_section specification.

import gdsfactory as gf

c = gf.components.taper_nc_sc(width1=1, width2=0.5, length=20, layer_wg='WGN', layer_nitride='WG', width_tip_nitride=0.15, width_tip_silicon=0.15, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-186.png
gdsfactory.components.tapers.taper_parabolic(length: float = 20, width1: float = 0.5, width2: float = 5.0, exp: float = 0.5, npoints: int = 100, layer: LayerSpec = 'WG') Component[source]#

Returns a parabolic_taper.

Parameters:
  • length – in um.

  • width1 – in um.

  • width2 – in um.

  • exp – exponent.

  • npoints – number of points.

  • layer – layer spec.

import gdsfactory as gf

c = gf.components.taper_parabolic(length=20, width1=0.5, width2=5, exp=0.5, npoints=100, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-187.png
gdsfactory.components.tapers.taper_sc_nc(width1: float = 0.5, width2: float = 1, length: float = 20, layer_wg: LayerSpec = 'WG', layer_nitride: LayerSpec = 'WGN', width_tip_nitride: float = 0.15, width_tip_silicon: float = 0.15, cross_section: CrossSectionSpec = 'strip') Component[source]#

Taper from strip to nitride.

Parameters:
  • width1 – strip width.

  • width2 – nitride width.

  • length – taper length.

  • layer_wg – strip layer.

  • layer_nitride – nitride layer.

  • width_tip_nitride – tip width for nitride.

  • width_tip_silicon – tip width for strip.

  • cross_section – cross_section specification.

import gdsfactory as gf

c = gf.components.taper_sc_nc(width1=0.5, width2=1, length=20, layer_wg='WG', layer_nitride='WGN', width_tip_nitride=0.15, width_tip_silicon=0.15, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-188.png
gdsfactory.components.tapers.taper_strip_to_ridge(length: float = 10.0, width1: float = 0.5, width2: float = 0.5, w_slab1: float = 0.15, w_slab2: float = 6.0, layer_wg: LayerSpec = 'WG', layer_slab: LayerSpec = 'SLAB90', cross_section: CrossSectionSpec = 'strip', use_slab_port: bool = False) Component[source]#

Linear taper from strip to rib.

Parameters:
  • length – taper length (um).

  • width1 – in um.

  • width2 – in um.

  • w_slab1 – slab width in um.

  • w_slab2 – slab width in um.

  • layer_wg – for input waveguide.

  • layer_slab – for output waveguide with slab.

  • cross_section – for input waveguide.

  • use_slab_port – if True adds a second port for the slab.

               __________________________
              /           |
      _______/____________|______________
            /             |
width1     |w_slab1       | w_slab2  width2
      ______\_____________|______________
             \            |
              \__________________________
import gdsfactory as gf

c = gf.components.taper_strip_to_ridge(length=10, width1=0.5, width2=0.5, w_slab1=0.15, w_slab2=6, layer_wg='WG', layer_slab='SLAB90', cross_section='strip', use_slab_port=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-189.png
gdsfactory.components.tapers.taper_strip_to_ridge_trenches(length: float = 10.0, width: float = 0.5, slab_offset: float = 3.0, trench_width: float = 2.0, trench_layer: LayerSpec = 'DEEP_ETCH', layer_wg: LayerSpec = 'WG', trench_offset: float = 0.1) Component[source]#

Defines taper using trenches to define the etch.

Parameters:
  • length – in um.

  • width – in um.

  • slab_offset – in um.

  • trench_width – in um.

  • trench_layer – trench layer.

  • layer_wg – waveguide layer.

  • trench_offset – after waveguide in um.

import gdsfactory as gf

c = gf.components.taper_strip_to_ridge_trenches(length=10, width=0.5, slab_offset=3, trench_width=2, trench_layer='DEEP_ETCH', layer_wg='WG', trench_offset=0.1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-190.png
gdsfactory.components.tapers.taper_strip_to_slab150(length: float = 10.0, width1: float = 0.5, width2: float = 0.5, w_slab1: float = 0.15, w_slab2: float = 6.0, layer_wg: LayerSpec = 'WG', *, layer_slab: LayerSpec = 'SLAB150', cross_section: CrossSectionSpec = 'strip', use_slab_port: bool = False) Component#

Linear taper from strip to rib.

Parameters:
  • length – taper length (um).

  • width1 – in um.

  • width2 – in um.

  • w_slab1 – slab width in um.

  • w_slab2 – slab width in um.

  • layer_wg – for input waveguide.

  • layer_slab – for output waveguide with slab.

  • cross_section – for input waveguide.

  • use_slab_port – if True adds a second port for the slab.

               __________________________
              /           |
      _______/____________|______________
            /             |
width1     |w_slab1       | w_slab2  width2
      ______\_____________|______________
             \            |
              \__________________________
import gdsfactory as gf

c = gf.components.taper_strip_to_slab150(length=10, width1=0.5, width2=0.5, w_slab1=0.15, w_slab2=6, layer_wg='WG', layer_slab='SLAB150', cross_section='strip', use_slab_port=False).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-191.png
gdsfactory.components.tapers.taper_w10_l100(*, filepath: Path = PosixPath('/home/runner/work/gdsfactory/gdsfactory/gdsfactory/components/tapers/csv_data/taper_strip_0p5_10_100.csv'), cross_section: CrossSectionSpec = 'strip') Component#

Returns taper from CSV file.

Parameters:
  • filepath – for CSV file.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

import gdsfactory as gf

c = gf.components.taper_w10_l100(cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-192.png
gdsfactory.components.tapers.taper_w10_l150(*, filepath: Path = PosixPath('/home/runner/work/gdsfactory/gdsfactory/gdsfactory/components/tapers/csv_data/taper_strip_0p5_10_150.csv'), cross_section: CrossSectionSpec = 'strip') Component#

Returns taper from CSV file.

Parameters:
  • filepath – for CSV file.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

import gdsfactory as gf

c = gf.components.taper_w10_l150(cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-193.png
gdsfactory.components.tapers.taper_w10_l200(*, filepath: Path = PosixPath('/home/runner/work/gdsfactory/gdsfactory/gdsfactory/components/tapers/csv_data/taper_strip_0p5_10_200.csv'), cross_section: CrossSectionSpec = 'strip') Component#

Returns taper from CSV file.

Parameters:
  • filepath – for CSV file.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

import gdsfactory as gf

c = gf.components.taper_w10_l200(cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-194.png
gdsfactory.components.tapers.taper_w11_l200(*, filepath: Path = PosixPath('/home/runner/work/gdsfactory/gdsfactory/gdsfactory/components/tapers/csv_data/taper_strip_0p5_11_200.csv'), cross_section: CrossSectionSpec = 'strip') Component#

Returns taper from CSV file.

Parameters:
  • filepath – for CSV file.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

import gdsfactory as gf

c = gf.components.taper_w11_l200(cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-195.png
gdsfactory.components.tapers.taper_w12_l200(*, filepath: Path = PosixPath('/home/runner/work/gdsfactory/gdsfactory/gdsfactory/components/tapers/csv_data/taper_strip_0p5_12_200.csv'), cross_section: CrossSectionSpec = 'strip') Component#

Returns taper from CSV file.

Parameters:
  • filepath – for CSV file.

  • cross_section – specification (CrossSection, string, CrossSectionFactory dict).

import gdsfactory as gf

c = gf.components.taper_w12_l200(cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-196.png

texts#

gdsfactory.components.texts.pixel_array(pixels: str = '\n XXX\nX   X\nXXXXX\nX   X\nX   X\n\n', pixel_size: float = 10.0, layer: LayerSpec = 'M1') Component[source]#

Returns a pixel component from a string representing the pixels.

Parameters:
  • pixels – string representing the pixels

  • pixel_size – width/height for each pixel

  • layer – layer for each pixel

import gdsfactory as gf

c = gf.components.pixel_array(pixels='\n XXX\nX   X\nXXXXX\nX   X\nX   X\n\n', pixel_size=10, layer='M1').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-197.png
gdsfactory.components.texts.text(text: str = 'abcd', size: float = 10.0, position: tuple[float, float] = (0, 0), justify: str = 'left', layer: LayerSpec = 'WG') Component[source]#

Text shapes.

Parameters:
  • text – string.

  • size – in um.

  • position – x, y position.

  • justify – left, right, center.

  • layer – for the text.

import gdsfactory as gf

c = gf.components.text(text='abcd', size=10, position=(0, 0), justify='left', layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-198.png
gdsfactory.components.texts.text_freetype(text: str = 'a', size: int = 10, justify: str = 'left', font: PathType = PosixPath('/home/runner/work/gdsfactory/gdsfactory/gdsfactory/components/texts/fonts/OCR-A.ttf'), layer: LayerSpec = 'WG', layers: LayerSpecs | None = None) Component[source]#

Returns text Component.

Parameters:
  • text – string.

  • size – in um.

  • justify – left, right, center.

  • font – Font face to use. Default DEPLOF does not require additional libraries, otherwise freetype load fonts. You can choose font by name (e.g. “Times New Roman”), or by file OTF or TTF filepath.

  • layer – list of layers to use for the text.

  • layers – list of layers to use for the text.

import gdsfactory as gf

c = gf.components.text_freetype(text='a', size=10, justify='left', layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-199.png
gdsfactory.components.texts.text_klayout(text: str = 'a', layer: LayerSpec = 'WG', layers: LayerSpecs | None = None, bbox_layers: LayerSpecs | None = None) Component[source]#

Returns a text component.

Parameters:
  • text – string.

  • layer – text layer.

  • layers – layers for the text.

  • bbox_layers – layers for the text bounding box.

import gdsfactory as gf

c = gf.components.text_klayout(text='a', layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-200.png
gdsfactory.components.texts.text_lines(text: tuple[str, ...] = ('Chip', '01'), size: float = 0.4, layer: LayerSpec = 'WG') Component[source]#

Returns a Component from a text lines.

Parameters:
  • text – list of strings.

  • size – text size.

  • layer – text layer.

import gdsfactory as gf

c = gf.components.text_lines(text=('Chip', '01'), size=0.4, layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-201.png
gdsfactory.components.texts.text_rectangular(text: str = 'abcd', size: float = 10.0, position: tuple[float, float] = (0.0, 0.0), justify: str = 'left', layer: LayerSpec | None = 'WG', layers: LayerSpecs | None = None, font: Callable[..., dict[str, str]] = <functools._lru_cache_wrapper object>) Component[source]#

Pixel based font, guaranteed to be manhattan, without acute angles.

Parameters:
  • text – string.

  • size – pixel size.

  • position – coordinate.

  • justify – left, right or center.

  • layer – for text.

  • layers – optional for duplicating the text.

  • font – function that returns dictionary of characters.

import gdsfactory as gf

c = gf.components.text_rectangular(text='abcd', size=10, position=(0, 0), justify='left', layer='WG').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-202.png
gdsfactory.components.texts.text_rectangular_multi_layer(text: str = 'abcd', layers: LayerSpecs = ('WG', 'M1', 'M2', 'MTOP'), text_factory: ComponentSpec = <function text_rectangular>, **kwargs: ~typing.Any) Component[source]#

Returns rectangular text in different layers.

Parameters:
  • text – string of text.

  • layers – list of layers to replicate the text.

  • text_factory – function to create the text Components.

  • kwargs – keyword arguments for text_factory.

Keyword Arguments:
  • size – pixel size.

  • position – coordinate.

  • justify – left, right or center.

  • font – function that returns dictionary of characters.

import gdsfactory as gf

c = gf.components.text_rectangular_multi_layer(text='abcd', layers=('WG', 'M1', 'M2', 'MTOP')).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-203.png

vias#

gdsfactory.components.vias.via(size: tuple[float, float] = (0.7, 0.7), spacing: tuple[float, float] | None = None, gap: float | None = None, enclosure: float = 1.0, layer: LayerSpec = 'VIAC', bbox_layers: Sequence[LayerSpec] | None = None, bbox_offset: float = 0, bbox_offsets: Sequence[float] | None = None, pitch: float = 2, column_pitch: float | None = None, row_pitch: float | None = None) Component[source]#

Rectangular via.

Parameters:
  • size – in x and y direction.

  • spacing – pitch_x, pitch_y. (deprecated).

  • gap – edge to edge via gap in x, y. (deprecated).

  • enclosure – inclusion of via.

  • layer – via layer.

  • bbox_layers – layers for the bounding box.

  • bbox_offset – in um.

  • bbox_offsets – List of offsets for each bbox_layer.

  • pitch – pitch between vias.

  • column_pitch – Optional pitch between columns of vias. Default is pitch.

  • row_pitch – Optional pitch between rows of vias. Default is pitch.

enclosure
_________________________________________
|<--->                                  |
|             gap[0]    size[0]         |
|             <------> <----->          |
|      ______          ______           |
|     |      |        |      |          |
|     |      |        |      |  size[1] |
|     |______|        |______|          |
|      <------------->                  |
|           pitch                       |
|_______________________________________|
import gdsfactory as gf

c = gf.components.via(size=(0.7, 0.7), enclosure=1, layer='VIAC', bbox_offset=0, pitch=2).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-204.png
gdsfactory.components.vias.via_chain(num_vias: int = 100, cols: int = 10, via: ComponentSpec = 'via1', contact: ComponentSpec = 'via_stack_m2_m3', layers_bot: LayerSpecs = ('M1',), layers_top: LayerSpecs = ('M2',), offsets_top: tuple[float, ...] = (0,), offsets_bot: tuple[float, ...] = (0,), via_min_enclosure: float = 1.0, min_metal_spacing: float = 1.0) Component[source]#

Via chain to extract via resistance.

Parameters:
  • num_vias – number of vias.

  • cols – number of column pairs.

  • via – via component.

  • contact – contact component.

  • layers_bot – list of bottom layers.

  • layers_top – list of top layers.

  • offsets_top – list of top layer offsets.

  • offsets_bot – list of bottom layer offsets.

  • via_min_enclosure – via_min_enclosure.

  • min_metal_spacing – min_metal_spacing.

side view:
                                      min_metal_spacing
   ┌────────────────────────────────────┐              ┌────────────────────────────────────┐
   │  layers_top                        │              │                                    │
   │                                    │◄───────────► │                                    │
   └─────────────┬─────┬────────────────┘              └───────────────┬─────┬──────────────┘
                 │     │         via_enclosure                         │     │
                 │     │◄───────────────►                              │     │
                 │     │                                               │     │
                 │     │                                               │     │
                 │width│                                               │     │
                 ◄─────►                                               │     │
                 │     │                                               │     │
   ┌─────────────┴─────┴───────────────────────────────────────────────┴─────┴───────────────┐
   │ layers_bot                                                                              │
   │                                                                                         │
   └─────────────────────────────────────────────────────────────────────────────────────────┘

   ◄─────────────────────────────────────────────────────────────────────────────────────────►
                                 2*e + w + min_metal_spacing + 2*e + w
import gdsfactory as gf

c = gf.components.via_chain(num_vias=100, cols=10, via='via1', contact='via_stack_m2_m3', layers_bot=('M1',), layers_top=('M2',), offsets_top=(0,), offsets_bot=(0,), via_min_enclosure=1, min_metal_spacing=1).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-205.png
gdsfactory.components.vias.via_circular(radius: float = 0.35, enclosure: float = 1.0, layer: LayerSpec = 'VIAC', pitch: float | None = 2, column_pitch: float | None = None, row_pitch: float | None = None, angle_resolution: float = 2.5) Component[source]#

Circular via.

Parameters:
  • radius – in um.

  • enclosure – inclusion of via in um for the layer above.

  • layer – via layer.

  • pitch – pitch between vias.

  • column_pitch – Optional pitch between columns of vias. Default is pitch.

  • row_pitch – Optional pitch between rows of vias. Default is pitch.

  • angle_resolution – number of degrees per point.

import gdsfactory as gf

c = gf.components.via_circular(radius=0.35, enclosure=1, layer='VIAC', pitch=2, angle_resolution=2.5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-206.png
gdsfactory.components.vias.via_corner(cross_section: ~collections.abc.Sequence[tuple[~gdsfactory.cross_section.CrossSection | str | dict[str, ~typing.Any] | ~collections.abc.Callable[[...], ~gdsfactory.cross_section.CrossSection] | ~kfactory.cross_section.SymmetricalCrossSection, tuple[int, ...]]] = ((<function metal2>, (0, 180)), (<function metal3>, (90, 270))), vias: tuple[ComponentSpec] = ('via1',), layers_labels: tuple[str, ...] = ('m2', 'm3'), **kwargs: ~typing.Any) Component[source]#

Returns Corner via.

Use in place of wire_corner to route between two layers.

Parameters:
  • cross_section – list of cross_section, orientation pairs.

  • vias – vias to use to fill the rectangles.

  • layers_labels – Labels to use for each layer.

  • kwargs – cross_section settings.

import gdsfactory as gf

c = gf.components.via_corner(cross_section=(({'function': 'metal2', 'module': 'gdsfactory.cross_section'}, (0, 180)), ({'function': 'metal3', 'module': 'gdsfactory.cross_section'}, (90, 270))), layers_labels=('m2', 'm3')).copy()
c.draw_ports()
c.plot()

(Source code)

gdsfactory.components.vias.via_stack(size: Size = (11.0, 11.0), layers: LayerSpecs = ('M1', 'M2', 'MTOP'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = ('via1', 'via2', None), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component[source]#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack(size=(11, 11), layers=('M1', 'M2', 'MTOP'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-208.png
gdsfactory.components.vias.via_stack_corner45(width: float = 10, layers: Sequence[LayerSpec | None] = ('M1', 'M2', 'MTOP'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = ('via1', 'via2', None), layer_port: LayerSpec | None = None, correct_size: bool = True) Component[source]#

Rectangular via array stack at a 45 degree angle.

Parameters:
  • width – of the corner45.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

import gdsfactory as gf

c = gf.components.via_stack_corner45(width=10, layers=('M1', 'M2', 'MTOP'), correct_size=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-209.png
gdsfactory.components.vias.via_stack_corner45_extended(corner: ComponentSpec = 'via_stack_corner45', via_stack: ComponentSpec = 'via_stack', width: float = 3, length: float = 10) Component[source]#

Rectangular via array stack at a 45 degree angle.

Parameters:
  • corner – corner component.

  • via_stack – for the via stack.

  • width – of the corner45.

  • length – of the straight.

import gdsfactory as gf

c = gf.components.via_stack_corner45_extended(corner='via_stack_corner45', via_stack='via_stack', width=3, length=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-210.png
gdsfactory.components.vias.via_stack_heater_mtop_mini(*, size: Size = (4, 4), layers: LayerSpecs = ('HEATER', 'M2', 'MTOP'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = (None, 'via1', 'via2'), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_heater_mtop_mini(size=(4, 4), layers=('HEATER', 'M2', 'MTOP'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-211.png
gdsfactory.components.vias.via_stack_m1_m3(size: Size = (11.0, 11.0), *, layers: LayerSpecs = ('M1', 'M2', 'MTOP'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = ('via1', 'via2', None), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_m1_m3(size=(11, 11), layers=('M1', 'M2', 'MTOP'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-212.png
gdsfactory.components.vias.via_stack_m1_mtop(size: Size = (11.0, 11.0), *, layers: LayerSpecs = ('M1', 'M2', 'MTOP'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = ('via1', 'via2', None), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_m1_mtop(size=(11, 11), layers=('M1', 'M2', 'MTOP'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-213.png
gdsfactory.components.vias.via_stack_m2_m3(size: Size = (11.0, 11.0), *, layers: LayerSpecs = ('M2', 'MTOP'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = ('via2', None), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_m2_m3(size=(11, 11), layers=('M2', 'MTOP'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-214.png
gdsfactory.components.vias.via_stack_npp_m1(size: Size = (11.0, 11.0), *, layers: LayerSpecs = ('WG', 'NPP', 'M1'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = (None, None, 'viac'), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_npp_m1(size=(11, 11), layers=('WG', 'NPP', 'M1'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-215.png
gdsfactory.components.vias.via_stack_slab_m1(size: Size = (11.0, 11.0), *, layers: LayerSpecs = ('SLAB90', 'M1'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = ('viac', 'via1'), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_slab_m1(size=(11, 11), layers=('SLAB90', 'M1'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-216.png
gdsfactory.components.vias.via_stack_slab_m1_horizontal(size: Size = (11.0, 11.0), *, layers: LayerSpecs = ('SLAB90', 'M1'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = ('viac', 'via1'), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = True, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_slab_m1_horizontal(size=(11, 11), layers=('SLAB90', 'M1'), correct_size=True, slot_horizontal=True, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-217.png
gdsfactory.components.vias.via_stack_slab_m2(size: Size = (11.0, 11.0), *, layers: LayerSpecs = ('SLAB90', 'M1', 'M2'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = ('viac', 'via1', None), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_slab_m2(size=(11, 11), layers=('SLAB90', 'M1', 'M2'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-218.png
gdsfactory.components.vias.via_stack_slab_npp_m3(size: Size = (11.0, 11.0), *, layers: LayerSpecs = ('SLAB90', 'NPP', 'M1'), layer_offsets: Floats | None = None, vias: Sequence[ComponentSpec | None] = (None, None, 'viac'), layer_port: LayerSpec | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None, correct_size: bool = True, slot_horizontal: bool = False, slot_vertical: bool = False, port_orientations: Ints | None = (180, 90, 0, -90)) Component#

Rectangular via array stack.

You can use it to connect different metal layers or metals to silicon. You can use the naming convention via_stack_layerSource_layerDestination contains 4 ports (e1, e2, e3, e4)

also know as Via array http://www.vlsi-expert.com/2017/12/vias.html

Parameters:
  • size – of the layers.

  • layers – layers on which to draw rectangles.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – vias to use to fill the rectangles.

  • layer_port – if None assumes port is on the last layer. (deprecated).

  • layer_to_port_orientations – dictionary of layer to port_orientations.

  • correct_size – if True, if the specified dimensions are too small it increases them to the minimum possible to fit a via.

  • slot_horizontal – if True, then vias are horizontal.

  • slot_vertical – if True, then vias are vertical.

  • port_orientations – list of port_orientations to add. None does not add ports.

import gdsfactory as gf

c = gf.components.via_stack_slab_npp_m3(size=(11, 11), layers=('SLAB90', 'NPP', 'M1'), correct_size=True, slot_horizontal=False, slot_vertical=False, port_orientations=(180, 90, 0, -90)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-219.png
gdsfactory.components.vias.via_stack_with_offset(layers: LayerSpecs = ('PPP', 'M1'), size: Size | None = (10, 10), sizes: Sequence[Size] | None = None, layer_offsets: Sequence[float] | None = None, vias: Sequence[ComponentSpec | None] = (None, 'viac'), offsets: Sequence[float] | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None) Component[source]#

Rectangular layer transition with offset between layers.

Parameters:
  • layers – layer specs between vias.

  • size – for all vias array.

  • sizes – Optional size for each via array. Overrides size.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – via spec for previous layer. None for no via.

  • offsets – optional offset for each layer relatively to the previous one. By default it only offsets by size[1] if there is a via.

  • layer_to_port_orientations – Optional dictionary with layer to port orientations.

side view

 __________________________
|                          |
|                          | layers[2]
|__________________________|           vias[2] = None
|                          |
| layer_offsets[1]+size    | layers[1]
|__________________________|
    |     |
    vias[1]
 ___|_____|__
|            |
|  sizes[0]  |  layers[0]
|____________|

    vias[0] = None
import gdsfactory as gf

c = gf.components.via_stack_with_offset(layers=('PPP', 'M1'), size=(10, 10)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-220.png
gdsfactory.components.vias.via_stack_with_offset_m1_m3(*, layers: LayerSpecs = ('M1', 'M2', 'MTOP'), size: Size | None = (10, 10), sizes: Sequence[Size] | None = None, layer_offsets: Sequence[float] | None = None, vias: Sequence[ComponentSpec | None] = (None, 'via1', 'via2'), offsets: Sequence[float] | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None) Component#

Rectangular layer transition with offset between layers.

Parameters:
  • layers – layer specs between vias.

  • size – for all vias array.

  • sizes – Optional size for each via array. Overrides size.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – via spec for previous layer. None for no via.

  • offsets – optional offset for each layer relatively to the previous one. By default it only offsets by size[1] if there is a via.

  • layer_to_port_orientations – Optional dictionary with layer to port orientations.

side view

 __________________________
|                          |
|                          | layers[2]
|__________________________|           vias[2] = None
|                          |
| layer_offsets[1]+size    | layers[1]
|__________________________|
    |     |
    vias[1]
 ___|_____|__
|            |
|  sizes[0]  |  layers[0]
|____________|

    vias[0] = None
import gdsfactory as gf

c = gf.components.via_stack_with_offset_m1_m3(layers=('M1', 'M2', 'MTOP'), size=(10, 10)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-221.png
gdsfactory.components.vias.via_stack_with_offset_ppp_m1(*, layers: LayerSpecs = ('PPP', 'M1'), size: Size | None = (10, 10), sizes: Sequence[Size] | None = None, layer_offsets: Sequence[float] | None = None, vias: Sequence[ComponentSpec | None] = (None, 'viac'), offsets: Sequence[float] | None = None, layer_to_port_orientations: dict[LayerSpec, list[int]] | None = None) Component#

Rectangular layer transition with offset between layers.

Parameters:
  • layers – layer specs between vias.

  • size – for all vias array.

  • sizes – Optional size for each via array. Overrides size.

  • layer_offsets – Optional offsets for each layer with respect to size. positive grows, negative shrinks the size.

  • vias – via spec for previous layer. None for no via.

  • offsets – optional offset for each layer relatively to the previous one. By default it only offsets by size[1] if there is a via.

  • layer_to_port_orientations – Optional dictionary with layer to port orientations.

side view

 __________________________
|                          |
|                          | layers[2]
|__________________________|           vias[2] = None
|                          |
| layer_offsets[1]+size    | layers[1]
|__________________________|
    |     |
    vias[1]
 ___|_____|__
|            |
|  sizes[0]  |  layers[0]
|____________|

    vias[0] = None
import gdsfactory as gf

c = gf.components.via_stack_with_offset_ppp_m1(layers=('PPP', 'M1'), size=(10, 10)).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-222.png

waveguides#

gdsfactory.components.waveguides.crossing(arm: ComponentSpec = <function crossing_arm>) Component[source]#

Waveguide crossing.

Parameters:

arm – arm spec.

import gdsfactory as gf

c = gf.components.crossing().copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-223.png
gdsfactory.components.waveguides.crossing45(crossing: ComponentSpec = <function crossing>, port_spacing: float = 40.0, dx: float | None = None, alpha: float = 0.08, npoints: int = 101, cross_section: CrossSectionSpec = 'strip', cross_section_bends: CrossSectionSpec = 'strip') Component[source]#

Returns 45deg crossing with bends.

Parameters:
  • crossing – crossing function.

  • port_spacing – target I/O port spacing.

  • dx – target length.

  • alpha – optimization parameter. diminish it for tight bends, increase it if raises assertion angle errors

  • npoints – number of points.

  • cross_section – cross_section spec.

  • cross_section_bends – cross_section spec.

The 45 Degree crossing CANNOT be kept as an SRef since we only allow for multiples of 90Deg rotations in SRef.

----   ----
    \ /
     X
    / \
---    ----
import gdsfactory as gf

c = gf.components.crossing45(port_spacing=40, alpha=0.08, npoints=101, cross_section='strip', cross_section_bends='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-224.png
gdsfactory.components.waveguides.crossing_etched(width: float = 0.5, r1: float = 3.0, r2: float = 1.1, w: float = 1.2, L: float = 3.4, layer_wg: LayerSpec = 'WG', layer_slab: LayerSpec = 'SLAB150') Component[source]#

Waveguide crossing.

Full crossing has to be on WG layer (to start with a 220nm slab). Then we etch the ellipses down to 150nm slabs and we keep linear taper at 220nm.

Parameters:
  • width – input waveguides width.

  • r1 – radii.

  • r2 – radii.

  • w – wide width.

  • L – length.

  • layer_wg – waveguide layer.

  • layer_slab – shallow etch layer.

import gdsfactory as gf

c = gf.components.crossing_etched(width=0.5, r1=3, r2=1.1, w=1.2, L=3.4, layer_wg='WG', layer_slab='SLAB150').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-225.png
gdsfactory.components.waveguides.crossing_linear_taper(width1: float = 2.5, width2: float = 0.5, length: float = 3, cross_section: CrossSectionSpec = 'strip', taper: ComponentSpec = 'taper') Component[source]#

Returns Crossing based on a taper.

The default is a dummy taper.

Parameters:
  • width1 – input width.

  • width2 – output width.

  • length – taper length.

  • cross_section – cross_section spec.

  • taper – taper spec.

import gdsfactory as gf

c = gf.components.crossing_linear_taper(width1=2.5, width2=0.5, length=3, cross_section='strip', taper='taper').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-226.png
gdsfactory.components.waveguides.straight(length: float = 10.0, npoints: int = 2, cross_section: CrossSectionSpec = 'strip', width: float | None = None) Component[source]#

Returns a Straight waveguide.

Parameters:
  • length – straight length (um).

  • npoints – number of points.

  • cross_section – specification (CrossSection, string or dict).

  • width – width of the waveguide. If None, it will use the width of the cross_section.

o1 -------------- o2
        length
import gdsfactory as gf

c = gf.components.straight(length=10, npoints=2, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-227.png
gdsfactory.components.waveguides.straight_array(n: int = 4, spacing: float = 4.0, length: float = 10.0, cross_section: CrossSectionSpec = 'strip') Component[source]#

Array of straights connected with grating couplers.

useful to align the 4 corners of the chip

Parameters:
  • n – number of straights.

  • spacing – edge to edge straight spacing.

  • length – straight length (um).

  • cross_section – specification (CrossSection, string or dict).

import gdsfactory as gf

c = gf.components.straight_array(n=4, spacing=4, length=10, cross_section='strip').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-228.png
gdsfactory.components.waveguides.straight_heater_doped_rib(length: float = 320.0, nsections: int = 3, cross_section: CrossSectionSpec = 'strip_rib_tip', cross_section_heater: CrossSectionSpec = 'rib_heater_doped', via_stack: ComponentSpec | None = 'via_stack_slab_npp_m3', via_stack_metal: ComponentSpec | None = 'via_stack_m1_mtop', via_stack_metal_size: Size = (10.0, 10.0), via_stack_size: Size = (10.0, 10.0), taper: ComponentSpec | None = <function taper_cross_section>, heater_width: float = 2.0, heater_gap: float = 0.8, via_stack_gap: float = 0.0, width: float = 0.5, xoffset_tip1: float = 0.2, xoffset_tip2: float = 0.4) Component[source]#

Returns a doped thermal phase shifter.

dimensions from https://doi.org/10.1364/OE.27.010456

Parameters:
  • length – of the waveguide in um.

  • nsections – between via_stacks.

  • cross_section – for the input/output ports.

  • cross_section_heater – for the heater.

  • via_stack – optional function to connect the heater strip.

  • via_stack_metal – function to connect the metal area.

  • via_stack_metal_size – x, y size in um.

  • via_stack_size – x, y size in um.

  • taper – optional taper spec.

  • heater_width – in um.

  • heater_gap – in um.

  • via_stack_gap – from edge of via_stack to waveguide.

  • width – waveguide width on the ridge.

  • xoffset_tip1 – distance in um from input taper to via_stack.

  • xoffset_tip2 – distance in um from output taper to via_stack.

                      length
|<--------------------------------------------->|
|              length_section                   |
|    <--------------------------->              |
|  length_via_stack                             |
|    <------->                             taper|
|    __________                   _________     |
|   |          |                  |        |    |
|   | via_stack|__________________|        |    |
|   |  size    |  heater width    |        |    |
|  /|__________|__________________|________|\   |
| / |             heater_gap               | \  |
|/  |______________________________________|  \ |
 \  |_______________width__________________|  /
  \ |                                      | /
   \|_____________heater_gap______________ |/
    |        |                    |        |
    |        |____heater_width____|        |
    |        |                    |        |
    |________|                    |________|

taper         cross_section_heater



                           |<------width------>|
                            ____________________ heater_gap             slab_gap
     top_via_stack         |                   |<---------->| bot_via_stack   <-->
 ___ ______________________|                   |___________________________|___
|   |            |               undoped Si                 |              |   |
|   |layer_heater|               intrinsic region           |layer_heater  |   |
|___|____________|__________________________________________|______________|___|
                                                             <------------>
                                                              heater_width
<------------------------------------------------------------------------------>
                               slab_width
import gdsfactory as gf

c = gf.components.straight_heater_doped_rib(length=320, nsections=3, cross_section='strip_rib_tip', cross_section_heater='rib_heater_doped', via_stack='via_stack_slab_npp_m3', via_stack_metal='via_stack_m1_mtop', via_stack_metal_size=(10, 10), via_stack_size=(10, 10), heater_width=2, heater_gap=0.8, via_stack_gap=0, width=0.5, xoffset_tip1=0.2, xoffset_tip2=0.4).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-229.png
gdsfactory.components.waveguides.straight_heater_doped_strip(length: float = 320.0, nsections: int = 3, cross_section: CrossSectionSpec = 'strip_heater_doped', cross_section_heater: CrossSectionSpec = 'rib_heater_doped', via_stack: ComponentSpec | None = 'via_stack_npp_m1', via_stack_metal: ComponentSpec | None = 'via_stack_m1_mtop', via_stack_metal_size: Size = (10.0, 10.0), via_stack_size: Size = (10.0, 10.0), taper: ComponentSpec | None = <function taper_cross_section>, heater_width: float = 2.0, heater_gap: float = 0.8, via_stack_gap: float = 0.0, width: float = 0.5, xoffset_tip1: float = 0.2, xoffset_tip2: float = 0.4) Component[source]#

Top view.

Parameters:
  • length – of the waveguide in um.

  • nsections – between via_stacks.

  • cross_section – for the input/output ports.

  • cross_section_heater – for the heater.

  • via_stack – optional function to connect the heater strip.

  • via_stack_metal – function to connect the metal area.

  • via_stack_metal_size – x, y size in um.

  • via_stack_size – x, y size in um.

  • taper – optional taper spec.

  • heater_width – in um.

  • heater_gap – in um.

  • via_stack_gap – from edge of via_stack to waveguide.

  • width – waveguide width on the ridge.

  • xoffset_tip1 – distance in um from input taper to via_stack.

  • xoffset_tip2 – distance in um from output taper to via_stack.

cross_section .. code:

                         |<------width------>|
 ____________             ___________________               ______________
|            |           |     undoped Si    |             |              |
|layer_heater|           |  intrinsic region |<----------->| layer_heater |
|____________|           |___________________|             |______________|
                                                            <------------>
                                               heater_gap     heater_width.
import gdsfactory as gf

c = gf.components.straight_heater_doped_strip(length=320, nsections=3, cross_section='strip_heater_doped', cross_section_heater='rib_heater_doped', via_stack='via_stack_npp_m1', via_stack_metal='via_stack_m1_mtop', via_stack_metal_size=(10, 10), via_stack_size=(10, 10), heater_width=2, heater_gap=0.8, via_stack_gap=0, width=0.5, xoffset_tip1=0.2, xoffset_tip2=0.4).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-230.png
gdsfactory.components.waveguides.straight_heater_meander(length: float = 300.0, spacing: float = 2.0, cross_section: CrossSectionSpec = 'strip', heater_width: float = 2.5, extension_length: float = 15.0, layer_heater: LayerSpec = 'HEATER', radius: float | None = None, via_stack: ComponentSpec | None = 'via_stack_heater_mtop', port_orientation1: float | None = None, port_orientation2: float | None = None, heater_taper_length: float = 10.0, straight_widths: Floats | None = None, taper_length: float = 10.0, n: int | None = 3) Component[source]#

Returns a meander based heater.

based on SungWon Chung, Makoto Nakai, and Hossein Hashemi, Low-power thermo-optic silicon modulator for large-scale photonic integrated systems Opt. Express 27, 13430-13459 (2019) https://www.osapublishing.org/oe/abstract.cfm?URI=oe-27-9-13430

Parameters:
  • length – total length of the optical path.

  • spacing – waveguide spacing (center to center).

  • cross_section – for waveguide.

  • heater_width – for heater.

  • extension_length – of input and output optical ports.

  • layer_heater – for top heater, if None, it does not add a heater.

  • radius – for the meander bends. Defaults to cross_section radius.

  • via_stack – for the heater to via_stack metal.

  • port_orientation1 – in degrees. None adds all orientations.

  • port_orientation2 – in degrees. None adds all orientations.

  • heater_taper_length – minimizes current concentrations from heater to via_stack.

  • straight_widths – widths of the straight sections.

  • taper_length – from the cross_section.

  • n – number of straight sections.

import gdsfactory as gf

c = gf.components.straight_heater_meander(length=300, spacing=2, cross_section='strip', heater_width=2.5, extension_length=15, layer_heater='HEATER', via_stack='via_stack_heater_mtop', heater_taper_length=10, taper_length=10, n=3).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-231.png
gdsfactory.components.waveguides.straight_heater_meander_doped(length: float = 300.0, spacing: float = 2.0, cross_section: gf.typings.CrossSectionSpec = 'strip', heater_width: float = 1.5, extension_length: float = 15.0, layers_doping: LayerSpecs = ('P', 'PP', 'PPP'), radius: float = 5.0, via_stack: ComponentSpec | None = functools.partial(<function via_stack>, size=(1.5, 1.5), layers=('M1', 'M2'), vias=(functools.partial(<function via>, layer='VIAC', size=(0.1, 0.1), pitch=0.2, enclosure=0.1), functools.partial(<function via>, layer='VIA1', size=(0.1, 0.1), pitch=0.2, enclosure=0.1))), port_orientation1: float | None = None, port_orientation2: float | None = None, straight_widths: Floats = (0.8, 0.9, 0.8), taper_length: float = 10) Component[source]#

Returns a meander based heater.

based on SungWon Chung, Makoto Nakai, and Hossein Hashemi, Low-power thermo-optic silicon modulator for large-scale photonic integrated systems Opt. Express 27, 13430-13459 (2019) https://www.osapublishing.org/oe/abstract.cfm?URI=oe-27-9-13430

Parameters:
  • length – total length of the optical path.

  • spacing – waveguide spacing (center to center).

  • cross_section – for waveguide.

  • heater_width – for heater.

  • extension_length – of input and output optical ports.

  • layers_doping – doping layers to be used for heater.

  • radius – for the meander bends.

  • via_stack – for the heater to via_stack metal.

  • port_orientation1 – in degrees. None adds all orientations.

  • port_orientation2 – in degrees. None adds all orientations.

  • straight_widths – width of the straight sections.

  • taper_length – from the cross_section.

import gdsfactory as gf

c = gf.components.straight_heater_meander_doped(length=300, spacing=2, cross_section='strip', heater_width=1.5, extension_length=15, layers_doping=('P', 'PP', 'PPP'), radius=5, straight_widths=(0.8, 0.9, 0.8), taper_length=10).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-232.png
gdsfactory.components.waveguides.straight_heater_metal(length: float = 320.0, *, length_undercut_spacing: float = 0, length_undercut: float = 5, length_straight: float = 0.1, length_straight_input: float = 0.1, cross_section: CrossSectionSpec = 'strip', cross_section_heater: CrossSectionSpec = 'heater_metal', cross_section_waveguide_heater: CrossSectionSpec = 'strip_heater_metal', cross_section_heater_undercut: CrossSectionSpec = 'strip_heater_metal_undercut', with_undercut: bool = False, via_stack: ComponentSpec | None = 'via_stack_heater_mtop', port_orientation1: int | None = None, port_orientation2: int | None = None, heater_taper_length: float = 5.0, ohms_per_square: float | None = None) Component#

Returns a thermal phase shifter.

dimensions from https://doi.org/10.1364/OE.27.010456

Parameters:
  • length – of the waveguide.

  • length_undercut_spacing – from undercut regions.

  • length_undercut – length of each undercut section.

  • length_straight – length of the straight waveguide.

  • length_straight_input – from input port to where trenches start.

  • cross_section – for waveguide ports.

  • cross_section_heater – for heated sections. heater metal only.

  • cross_section_waveguide_heater – for heated sections.

  • cross_section_heater_undercut – for heated sections with undercut.

  • with_undercut – isolation trenches for higher efficiency.

  • via_stack – via stack.

  • port_orientation1 – left via stack port orientation.

  • port_orientation2 – right via stack port orientation.

  • heater_taper_length – minimizes current concentrations from heater to via_stack.

  • ohms_per_square – to calculate resistance.

import gdsfactory as gf

c = gf.components.straight_heater_metal(length=320, length_undercut_spacing=0, length_undercut=5, length_straight=0.1, length_straight_input=0.1, cross_section='strip', cross_section_heater='heater_metal', cross_section_waveguide_heater='strip_heater_metal', cross_section_heater_undercut='strip_heater_metal_undercut', with_undercut=False, via_stack='via_stack_heater_mtop', heater_taper_length=5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-233.png
gdsfactory.components.waveguides.straight_heater_metal_90_90(length: float = 320.0, *, length_undercut_spacing: float = 0, length_undercut: float = 5, length_straight: float = 0.1, length_straight_input: float = 0.1, cross_section: CrossSectionSpec = 'strip', cross_section_heater: CrossSectionSpec = 'heater_metal', cross_section_waveguide_heater: CrossSectionSpec = 'strip_heater_metal', cross_section_heater_undercut: CrossSectionSpec = 'strip_heater_metal_undercut', with_undercut: bool = False, via_stack: ComponentSpec | None = 'via_stack_heater_mtop', port_orientation1: int | None = 90, port_orientation2: int | None = 90, heater_taper_length: float = 5.0, ohms_per_square: float | None = None) Component#

Returns a thermal phase shifter.

dimensions from https://doi.org/10.1364/OE.27.010456

Parameters:
  • length – of the waveguide.

  • length_undercut_spacing – from undercut regions.

  • length_undercut – length of each undercut section.

  • length_straight – length of the straight waveguide.

  • length_straight_input – from input port to where trenches start.

  • cross_section – for waveguide ports.

  • cross_section_heater – for heated sections. heater metal only.

  • cross_section_waveguide_heater – for heated sections.

  • cross_section_heater_undercut – for heated sections with undercut.

  • with_undercut – isolation trenches for higher efficiency.

  • via_stack – via stack.

  • port_orientation1 – left via stack port orientation.

  • port_orientation2 – right via stack port orientation.

  • heater_taper_length – minimizes current concentrations from heater to via_stack.

  • ohms_per_square – to calculate resistance.

import gdsfactory as gf

c = gf.components.straight_heater_metal_90_90(length=320, length_undercut_spacing=0, length_undercut=5, length_straight=0.1, length_straight_input=0.1, cross_section='strip', cross_section_heater='heater_metal', cross_section_waveguide_heater='strip_heater_metal', cross_section_heater_undercut='strip_heater_metal_undercut', with_undercut=False, via_stack='via_stack_heater_mtop', port_orientation1=90, port_orientation2=90, heater_taper_length=5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-234.png
gdsfactory.components.waveguides.straight_heater_metal_simple(length: float = 320.0, cross_section_heater: CrossSectionSpec = 'heater_metal', cross_section_waveguide_heater: CrossSectionSpec = 'strip_heater_metal', via_stack: ComponentSpec | None = 'via_stack_heater_mtop', port_orientation1: int | None = None, port_orientation2: int | None = None, heater_taper_length: float = 5.0, ohms_per_square: float | None = None) Component[source]#

Returns a thermal phase shifter that has properly fixed electrical connectivity to extract a suitable electrical netlist and models.

dimensions from https://doi.org/10.1364/OE.27.010456.

Parameters:
  • length – of the waveguide.

  • length_undercut – length of each undercut section.

  • cross_section_heater – for heated sections. heater metal only.

  • cross_section_waveguide_heater – for heated sections.

  • via_stack – via stack.

  • port_orientation1 – left via stack port orientation.

  • port_orientation2 – right via stack port orientation.

  • heater_taper_length – minimizes current concentrations from heater to via_stack.

  • ohms_per_square – to calculate resistance.

import gdsfactory as gf

c = gf.components.straight_heater_metal_simple(length=320, cross_section_heater='heater_metal', cross_section_waveguide_heater='strip_heater_metal', via_stack='via_stack_heater_mtop', heater_taper_length=5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-235.png
gdsfactory.components.waveguides.straight_heater_metal_undercut(length: float = 320.0, length_undercut_spacing: float = 6.0, length_undercut: float = 30.0, length_straight: float = 0.1, length_straight_input: float = 15.0, cross_section: CrossSectionSpec = 'strip', cross_section_heater: CrossSectionSpec = 'heater_metal', cross_section_waveguide_heater: CrossSectionSpec = 'strip_heater_metal', cross_section_heater_undercut: CrossSectionSpec = 'strip_heater_metal_undercut', with_undercut: bool = True, via_stack: ComponentSpec | None = 'via_stack_heater_mtop', port_orientation1: int | None = None, port_orientation2: int | None = None, heater_taper_length: float = 5.0, ohms_per_square: float | None = None) Component[source]#

Returns a thermal phase shifter.

dimensions from https://doi.org/10.1364/OE.27.010456

Parameters:
  • length – of the waveguide.

  • length_undercut_spacing – from undercut regions.

  • length_undercut – length of each undercut section.

  • length_straight – length of the straight waveguide.

  • length_straight_input – from input port to where trenches start.

  • cross_section – for waveguide ports.

  • cross_section_heater – for heated sections. heater metal only.

  • cross_section_waveguide_heater – for heated sections.

  • cross_section_heater_undercut – for heated sections with undercut.

  • with_undercut – isolation trenches for higher efficiency.

  • via_stack – via stack.

  • port_orientation1 – left via stack port orientation.

  • port_orientation2 – right via stack port orientation.

  • heater_taper_length – minimizes current concentrations from heater to via_stack.

  • ohms_per_square – to calculate resistance.

import gdsfactory as gf

c = gf.components.straight_heater_metal_undercut(length=320, length_undercut_spacing=6, length_undercut=30, length_straight=0.1, length_straight_input=15, cross_section='strip', cross_section_heater='heater_metal', cross_section_waveguide_heater='strip_heater_metal', cross_section_heater_undercut='strip_heater_metal_undercut', with_undercut=True, via_stack='via_stack_heater_mtop', heater_taper_length=5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-236.png
gdsfactory.components.waveguides.straight_heater_metal_undercut_90_90(length: float = 320.0, length_undercut_spacing: float = 6.0, length_undercut: float = 30.0, length_straight: float = 0.1, length_straight_input: float = 15.0, cross_section: CrossSectionSpec = 'strip', cross_section_heater: CrossSectionSpec = 'heater_metal', cross_section_waveguide_heater: CrossSectionSpec = 'strip_heater_metal', cross_section_heater_undercut: CrossSectionSpec = 'strip_heater_metal_undercut', with_undercut: bool = True, via_stack: ComponentSpec | None = 'via_stack_heater_mtop', *, port_orientation1: int | None = 90, port_orientation2: int | None = 90, heater_taper_length: float = 5.0, ohms_per_square: float | None = None) Component#

Returns a thermal phase shifter.

dimensions from https://doi.org/10.1364/OE.27.010456

Parameters:
  • length – of the waveguide.

  • length_undercut_spacing – from undercut regions.

  • length_undercut – length of each undercut section.

  • length_straight – length of the straight waveguide.

  • length_straight_input – from input port to where trenches start.

  • cross_section – for waveguide ports.

  • cross_section_heater – for heated sections. heater metal only.

  • cross_section_waveguide_heater – for heated sections.

  • cross_section_heater_undercut – for heated sections with undercut.

  • with_undercut – isolation trenches for higher efficiency.

  • via_stack – via stack.

  • port_orientation1 – left via stack port orientation.

  • port_orientation2 – right via stack port orientation.

  • heater_taper_length – minimizes current concentrations from heater to via_stack.

  • ohms_per_square – to calculate resistance.

import gdsfactory as gf

c = gf.components.straight_heater_metal_undercut_90_90(length=320, length_undercut_spacing=6, length_undercut=30, length_straight=0.1, length_straight_input=15, cross_section='strip', cross_section_heater='heater_metal', cross_section_waveguide_heater='strip_heater_metal', cross_section_heater_undercut='strip_heater_metal_undercut', with_undercut=True, via_stack='via_stack_heater_mtop', port_orientation1=90, port_orientation2=90, heater_taper_length=5).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-237.png
gdsfactory.components.waveguides.straight_piecewise(x: Sequence[float] | Path, widths: Sequence[float], layer: tuple[int, int] | str | int | LayerEnum, sections: Sequence[Section] | None = None, port_names: tuple[str | None, str | None] = ('o1', 'o2'), name: str = 'core', **kwargs: Any) Component[source]#

Create a component with a piecewise-defined straight waveguide.

Parameters:
  • x – X coordinates or a custom Path object.

  • widths – Waveguide widths at each corresponding x.

  • layer – Layer to extrude.

  • sections – Additional cross-section sections to extrude.

  • port_names – Port names for the waveguide.

  • name – Name for the core (main) Section.

  • **kwargs – Additional keyword arguments for the Section.

import gdsfactory as gf

c = gf.components.straight_piecewise(port_names=('o1', 'o2'), name='core').copy()
c.draw_ports()
c.plot()

(Source code)

gdsfactory.components.waveguides.straight_pin(length: float = 500.0, cross_section: CrossSectionSpec = <function pin>, via_stack: ComponentSpec = 'via_stack_slab_m3', via_stack_width: float = 10.0, via_stack_spacing: float = 2, taper: ComponentSpec | None = 'taper_strip_to_ridge') Component[source]#

Returns rib waveguide with doping and via_stacks used for PN and PIN modulators.

For PIN: https://doi.org/10.1364/OE.26.029983

500um length for PI phase shift https://ieeexplore.ieee.org/document/8268112

to go beyond 2PI, you will need at least 1mm https://ieeexplore.ieee.org/document/8853396/

For PN: Typical lengths in practice are 2-5mm depending on doping,engineering and application: https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-25-30350&id=275107 https://opg.optica.org/oe/fulltext.cfm?uri=oe-20-11-12014&id=233271

Parameters:
  • length – of the waveguide.

  • cross_section – for the waveguide.

  • via_stack – for the via_stacks.

  • via_stack_width – width of the via_stack.

  • via_stack_spacing – spacing between via_stacks.

  • taper – optional taper.

import gdsfactory as gf

c = gf.components.straight_pin(length=500, via_stack='via_stack_slab_m3', via_stack_width=10, via_stack_spacing=2, taper='taper_strip_to_ridge').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-239.png
gdsfactory.components.waveguides.straight_pin_slot(length: float = 500.0, cross_section: CrossSectionSpec = 'pin', via_stack: ComponentSpec | None = 'via_stack_m1_mtop', via_stack_width: float = 10.0, via_stack_slab: ComponentSpec | None = 'via_stack_slab_m1_horizontal', via_stack_slab_top: ComponentSpec | None = None, via_stack_slab_bot: ComponentSpec | None = None, via_stack_slab_width: float | None = None, via_stack_spacing: float = 3.0, via_stack_slab_spacing: float = 2.0, taper: ComponentSpec | None = 'taper_strip_to_ridge', width: float | None = None) Component[source]#

Returns a PIN straight waveguide with slotted via.

https://doi.org/10.1364/OE.26.029983

500um length for PI phase shift https://ieeexplore.ieee.org/document/8268112

to go beyond 2PI, you will need at least 1mm https://ieeexplore.ieee.org/document/8853396/

Parameters:
  • length – of the waveguide.

  • cross_section – for the waveguide.

  • via_stack – for via_stacking the metal.

  • via_stack_width – in um.

  • via_stack_slab – function for the component via_stacking the slab.

  • via_stack_slab_top – Optional, defaults to via_stack_slab.

  • via_stack_slab_bot – Optional, defaults to via_stack_slab.

  • via_stack_slab_width – defaults to via_stack_width.

  • via_stack_spacing – spacing between via_stacks.

  • via_stack_slab_spacing – spacing between via_stacks slabs.

  • taper – optional taper.

  • width – width of the waveguide. If None, it will use the width of the cross_section.

import gdsfactory as gf

c = gf.components.straight_pin_slot(length=500, cross_section='pin', via_stack='via_stack_m1_mtop', via_stack_width=10, via_stack_slab='via_stack_slab_m1_horizontal', via_stack_spacing=3, via_stack_slab_spacing=2, taper='taper_strip_to_ridge').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-240.png
gdsfactory.components.waveguides.straight_pn(*, length: float = 2000, cross_section: CrossSectionSpec = 'pn', via_stack: ComponentSpec = 'via_stack_slab_m3', via_stack_width: float = 10.0, via_stack_spacing: float = 2, taper: ComponentSpec | None = 'taper_strip_to_ridge') Component#

Returns rib waveguide with doping and via_stacks used for PN and PIN modulators.

For PIN: https://doi.org/10.1364/OE.26.029983

500um length for PI phase shift https://ieeexplore.ieee.org/document/8268112

to go beyond 2PI, you will need at least 1mm https://ieeexplore.ieee.org/document/8853396/

For PN: Typical lengths in practice are 2-5mm depending on doping,engineering and application: https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-25-30350&id=275107 https://opg.optica.org/oe/fulltext.cfm?uri=oe-20-11-12014&id=233271

Parameters:
  • length – of the waveguide.

  • cross_section – for the waveguide.

  • via_stack – for the via_stacks.

  • via_stack_width – width of the via_stack.

  • via_stack_spacing – spacing between via_stacks.

  • taper – optional taper.

import gdsfactory as gf

c = gf.components.straight_pn(length=2000, cross_section='pn', via_stack='via_stack_slab_m3', via_stack_width=10, via_stack_spacing=2, taper='taper_strip_to_ridge').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-241.png
gdsfactory.components.waveguides.straight_pn_slot(length: float = 500.0, *, cross_section: CrossSectionSpec = <function pn>, via_stack: ComponentSpec | None = 'via_stack_m1_mtop', via_stack_width: float = 10.0, via_stack_slab: ComponentSpec | None = 'via_stack_slab_m1_horizontal', via_stack_slab_top: ComponentSpec | None = None, via_stack_slab_bot: ComponentSpec | None = None, via_stack_slab_width: float | None = None, via_stack_spacing: float = 3.0, via_stack_slab_spacing: float = 2.0, taper: ComponentSpec | None = 'taper_strip_to_ridge', width: float | None = None) Component#

Returns a PIN straight waveguide with slotted via.

https://doi.org/10.1364/OE.26.029983

500um length for PI phase shift https://ieeexplore.ieee.org/document/8268112

to go beyond 2PI, you will need at least 1mm https://ieeexplore.ieee.org/document/8853396/

Parameters:
  • length – of the waveguide.

  • cross_section – for the waveguide.

  • via_stack – for via_stacking the metal.

  • via_stack_width – in um.

  • via_stack_slab – function for the component via_stacking the slab.

  • via_stack_slab_top – Optional, defaults to via_stack_slab.

  • via_stack_slab_bot – Optional, defaults to via_stack_slab.

  • via_stack_slab_width – defaults to via_stack_width.

  • via_stack_spacing – spacing between via_stacks.

  • via_stack_slab_spacing – spacing between via_stacks slabs.

  • taper – optional taper.

  • width – width of the waveguide. If None, it will use the width of the cross_section.

import gdsfactory as gf

c = gf.components.straight_pn_slot(length=500, via_stack='via_stack_m1_mtop', via_stack_width=10, via_stack_slab='via_stack_slab_m1_horizontal', via_stack_spacing=3, via_stack_slab_spacing=2, taper='taper_strip_to_ridge').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-242.png
gdsfactory.components.waveguides.wire_corner(cross_section: CrossSectionSpec = 'metal_routing', port_names: Sequence[str] = ('e1', 'e2'), port_types: Sequence[str] = ('electrical', 'electrical'), width: float | None = None, radius: None | float = None) Component[source]#

Returns 45 degrees electrical corner wire.

Parameters:
  • cross_section – spec.

  • port_names – port names.

  • port_types – port types.

  • width – optional width. Defaults to cross_section width.

  • radius – ignored.

import gdsfactory as gf

c = gf.components.wire_corner(cross_section='metal_routing', port_names=('e1', 'e2'), port_types=('electrical', 'electrical')).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-243.png
gdsfactory.components.waveguides.wire_corner45(cross_section: CrossSectionSpec = 'metal_routing', radius: float = 10, width: float | None = None, layer: LayerSpec | None = None, with_corner90_ports: bool = True) Component[source]#

Returns 90 degrees electrical corner wire.

Parameters:
  • cross_section – spec.

  • radius – in um.

  • width – optional width.

  • layer – optional layer.

  • with_corner90_ports – if True adds ports at 90 degrees.

import gdsfactory as gf

c = gf.components.wire_corner45(cross_section='metal_routing', radius=10, with_corner90_ports=True).copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-244.png
gdsfactory.components.waveguides.wire_corner_sections(cross_section: CrossSectionSpec = 'metal_routing') Component[source]#

Returns 90 degrees electrical corner wire, where all cross_section sections properly represented.

Works well with symmetric cross_sections, not quite ready for asymmetric.

Parameters:

cross_section – spec.

import gdsfactory as gf

c = gf.components.wire_corner_sections(cross_section='metal_routing').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-245.png
gdsfactory.components.waveguides.wire_straight(length: float = 10.0, npoints: int = 2, cross_section: CrossSectionSpec = 'metal_routing', width: float | None = None) Component[source]#

Returns a Straight waveguide.

Parameters:
  • length – straight length (um).

  • npoints – number of points.

  • cross_section – specification (CrossSection, string or dict).

  • width – width of the waveguide. If None, it will use the width of the cross_section.

o1 -------------- o2
        length
import gdsfactory as gf

c = gf.components.wire_straight(length=10, npoints=2, cross_section='metal_routing').copy()
c.draw_ports()
c.plot()

(Source code, png, hires.png, pdf)

_images/components-246.png