gdsfactory.technology.DerivedLayer#
- class gdsfactory.technology.DerivedLayer(*, sizings_xoffsets=(0,), sizings_yoffsets=(0,), sizings_modes=(2,), layer1, layer2, operation)[source]#
Physical “derived layer”, resulting from a combination of GDS design layers. Can be used by renderers and simulators.
Overloads operators for simpler expressions.
- Parameters:
sizings_xoffsets (Sequence[int])
sizings_yoffsets (Sequence[int])
sizings_modes (Sequence[int])
layer1 (DerivedLayer | LogicalLayer)
layer2 (DerivedLayer | LogicalLayer)
operation (Literal['and', '&', 'or', '|', 'xor', '^', 'not', '-'])
- input_layer1#
primary layer comprising the derived layer. Can be a GDS design layer (kf.kcell.LayerEnum , tuple[int, int]), or another derived layer.
- input_layer2#
secondary layer comprising the derived layer. Can be a GDS design layer (kf.kcell.LayerEnum , tuple[int, int]), or another derived layer.
- operation#
operation to perform between layer1 and layer2. One of “and”, “or”, “xor”, or “not” or associated symbols.
- Type:
Literal[‘and’, ‘&’, ‘or’, ‘|’, ‘xor’, ‘^’, ‘not’, ‘-’]
- __init__(**data)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
Methods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])from_orm(obj)get_shapes(component)Return the shapes of the component argument corresponding to this layer.
get_symbol()json(*[, include, exclude, by_alias, ...])model_construct([_fields_set])Creates a new instance of the Model class with validated data.
model_copy(*[, update, deep])!!! abstract "Usage Documentation"
model_dump(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json(*[, indent, ensure_ascii, ...])!!! abstract "Usage Documentation"
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, extra, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])sized(xoffset[, yoffset, mode])Accumulates a list of sizing operations for the layer by the provided offset (in dbu).
update_forward_refs(**localns)validate(value)Attributes
keyword_to_symbolmodel_computed_fieldsmodel_configConfiguration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extraGet extra fields set during validation.
model_fieldsmodel_fields_setReturns the set of fields that have been explicitly set on this model instance.
symbol_to_keywordlayer1layer2sizings_xoffsetssizings_yoffsetssizings_modes