Path and CrossSection#

You can create a Path in gdsfactory and extrude it with an arbitrary CrossSection.

Lets create a path:

  • Create a blank Path.

  • Append points to the Path either using the built-in functions (arc(), straight(), euler() …) or by providing your own lists of points

  • Specify CrossSection with layers and offsets.

  • Extrude Path with a CrossSection to create a Component with the path polygons in it.

import matplotlib.pyplot as plt
import numpy as np

import gdsfactory as gf

Path#

The first step is to generate the list of points we want the path to follow. Let’s start out by creating a blank Path and using the built-in functions to make a few smooth turns.

p1 = gf.path.straight(length=5)
p2 = gf.path.euler(radius=5, angle=45, p=0.5, use_eff=False)
p = p1 + p2
f = p.plot()
../_images/fcb7d62633d9a1280c2ea0da2656b120bda6db262f3d2d6bdecee4b0074f42ff.png
p1 = gf.path.straight(length=5)
p2 = gf.path.euler(radius=5, angle=45, p=0.5, use_eff=False)
p = p2 + p1
f = p.plot()
../_images/a408c38be95aea1cf351f598103b8d93fe68a9e1e9fdaf565204b25f59731f18.png
P = gf.Path()
P += gf.path.arc(radius=10, angle=90)  # Circular arc
P += gf.path.straight(length=10)  # Straight section
P += gf.path.euler(radius=3, angle=-90)  # Euler bend (aka "racetrack" curve)
P += gf.path.straight(length=40)
P += gf.path.arc(radius=8, angle=-45)
P += gf.path.straight(length=10)
P += gf.path.arc(radius=8, angle=45)
P += gf.path.straight(length=10)

f = P.plot()
../_images/405235a0ebfd8f2c57e78df77f277aea244d860e3f7022e3ad81ca5c6b60d4ae.png
p2 = P.copy().rotate(45)
f = p2.plot()
../_images/928b0db0079be996e14c2315d57dfbe5b483d05435c2501971797fd6ae576830.png
P.points - p2.points
array([[  0.        ,   0.        ],
       [  0.07775818,  -0.18109421],
       [  0.16015338,  -0.36012627],
       [  0.24713097,  -0.53697746],
       [  0.33863327,  -0.71153054],
       [  0.43459961,  -0.88366975],
       [  0.53496636,  -1.05328096],
       [  0.63966697,  -1.2202517 ],
       [  0.74863202,  -1.38447127],
       [  0.86178925,  -1.54583076],
       [  0.97906364,  -1.7042232 ],
       [  1.10037742,  -1.85954356],
       [  1.22565016,  -2.01168884],
       [  1.35479879,  -2.16055818],
       [  1.48773767,  -2.30605285],
       [  1.62437867,  -2.44807638],
       [  1.76463118,  -2.58653461],
       [  1.9084022 ,  -2.72133573],
       [  2.0555964 ,  -2.85239035],
       [  2.20611618,  -2.97961158],
       [  2.35986175,  -3.10291506],
       [  2.51673115,  -3.22221903],
       [  2.67662037,  -3.33744439],
       [  2.83942339,  -3.44851474],
       [  3.00503227,  -3.55535642],
       [  3.1733372 ,  -3.6578986 ],
       [  3.34422657,  -3.75607328],
       [  3.51758709,  -3.84981537],
       [  3.69330379,  -3.93906271],
       [  3.87126017,  -4.02375613],
       [  4.05133823,  -4.10383946],
       [  4.23341856,  -4.1792596 ],
       [  4.41738044,  -4.24996655],
       [  4.60310189,  -4.31591343],
       [  4.79045976,  -4.3770565 ],
       [  4.97932982,  -4.43335522],
       [  5.16958684,  -4.48477228],
       [  5.36110467,  -4.53127356],
       [  5.55375631,  -4.57282824],
       [  5.74741403,  -4.60940877],
       [  5.94194941,  -4.64099089],
       [  6.13723348,  -4.66755366],
       [  6.33313674,  -4.68907946],
       [  6.52952929,  -4.70555403],
       [  6.72628092,  -4.71696644],
       [  6.92326117,  -4.72330911],
       [  7.12033942,  -4.72457786],
       [  7.317385  ,  -4.72077183],
       [  7.51426725,  -4.71189355],
       [  7.71085564,  -4.69794891],
       [  7.90701981,  -4.67894715],
       [  8.10262968,  -4.65490087],
       [  8.29755556,  -4.62582602],
       [  8.4916682 ,  -4.59174187],
       [  8.6848389 ,  -4.55267103],
       [  8.87693955,  -4.50863939],
       [  9.0678428 ,  -4.45967617],
       [  9.25742205,  -4.40581381],
       [  9.44555161,  -4.34708805],
       [  9.63210673,  -4.28353781],
       [  9.81696372,  -4.21520523],
       [ 10.        ,  -4.14213562],
       [ 17.07106781,  -1.21320344],
       [ 17.22259744,  -1.15062977],
       [ 17.3745295 ,  -1.0890412 ],
       [ 17.52724719,  -1.02943054],
       [ 17.68109502,  -0.9728054 ],
       [ 17.83635884,  -0.92019408],
       [ 17.99324531,  -0.87264941],
       [ 18.15186066,  -0.83125013],
       [ 18.31218874,  -0.79709882],
       [ 18.47406876,  -0.77131591],
       [ 18.63717281,  -0.75502883],
       [ 18.80098407,  -0.74935572],
       [ 18.98113405,  -0.75643383],
       [ 19.16017334,  -0.77762453],
       [ 19.33699811,  -0.81279716],
       [ 19.51051817,  -0.86173488],
       [ 19.67966373,  -0.92413597],
       [ 19.84339193,  -0.9996157 ],
       [ 20.00069333,  -1.08770872],
       [ 20.15059814,  -1.18787191],
       [ 20.29218212,  -1.29948772],
       [ 20.42457237,  -1.42186801],
       [ 20.53639293,  -1.54171156],
       [ 20.6402082 ,  -1.66856024],
       [ 20.73644339,  -1.80125797],
       [ 20.82566384,  -1.93877567],
       [ 20.90854811,  -2.08020737],
       [ 20.98586445,  -2.22476202],
       [ 21.05845073,  -2.37175194],
       [ 21.12719755,  -2.5205788 ],
       [ 21.19303416,  -2.67071762],
       [ 21.25691665,  -2.82169951],
       [ 21.31981802,  -2.97309339],
       [ 33.03554677, -31.25736464],
       [ 33.1091836 , -31.44370627],
       [ 33.17668408, -31.63235747],
       [ 33.23797592, -31.82311621],
       [ 33.29299349, -32.01577822],
       [ 33.34167789, -32.21013721],
       [ 33.38397696, -32.40598505],
       [ 33.41984543, -32.60311201],
       [ 33.44924488, -32.80130701],
       [ 33.47214384, -33.00035782],
       [ 33.48851777, -33.20005129],
       [ 33.49834914, -33.40017358],
       [ 33.50162744, -33.60051039],
       [ 33.49834914, -33.80084721],
       [ 33.48851777, -34.0009695 ],
       [ 33.47214384, -34.20066296],
       [ 33.44924488, -34.39971377],
       [ 33.41984543, -34.59790877],
       [ 33.38397696, -34.79503574],
       [ 33.34167789, -34.99088357],
       [ 33.29299349, -35.18524256],
       [ 33.23797592, -35.37790458],
       [ 33.17668408, -35.56866332],
       [ 33.1091836 , -35.75731451],
       [ 33.03554677, -35.94365614],
       [ 30.10661458, -43.01472396],
       [ 30.03297776, -43.20106559],
       [ 29.96547728, -43.38971678],
       [ 29.90418544, -43.58047552],
       [ 29.84916786, -43.77313754],
       [ 29.80048347, -43.96749653],
       [ 29.75818439, -44.16334436],
       [ 29.72231592, -44.36047132],
       [ 29.69291647, -44.55866633],
       [ 29.67001752, -44.75771713],
       [ 29.65364359, -44.9574106 ],
       [ 29.64381221, -45.15753289],
       [ 29.64053392, -45.35786971],
       [ 29.64381221, -45.55820652],
       [ 29.65364359, -45.75832881],
       [ 29.67001752, -45.95802228],
       [ 29.69291647, -46.15707309],
       [ 29.72231592, -46.35526809],
       [ 29.75818439, -46.55239505],
       [ 29.80048347, -46.74824289],
       [ 29.84916786, -46.94260187],
       [ 29.90418544, -47.13526389],
       [ 29.96547728, -47.32602263],
       [ 30.03297776, -47.51467382],
       [ 30.10661458, -47.70101546],
       [ 33.03554677, -54.77208327]])

You can also modify our Path in the same ways as any other gdsfactory object:

  • Manipulation with move(), rotate(), mirror(), etc

  • Accessing properties like xmin, y, center, bbox, etc

P.movey(10)
P.xmin = 20
f = P.plot()
../_images/c356bab41e0a36730c9f9080688c4d85c2f3606867a9adbd959a9cc0018febda.png

You can also check the length of the curve with the length() method:

P.length()
105.341

CrossSection#

Now that you’ve got your path defined, the next step is to define the cross-section of the path. To do this, you can create a blank CrossSection and add whatever cross-sections you want to it. You can then combine the Path and the CrossSection using the gf.path.extrude() function to generate a Component:

Option 1: Single layer and width cross-section#

The simplest option is to just set the cross-section to be a constant width by passing a number to extrude() like so:

# Extrude the Path and the CrossSection
c = gf.path.extrude(P, layer=(1, 0), width=1.5)
c.plot()
../_images/61ebb4a6a0c8b8f9227a5b2a57d9ed55ccd1f3fcb89f61bb28b891d2d0c83deb.png

Option 2: Arbitrary Cross-section#

You can also extrude an arbitrary cross_section

Now, what if we want a more complicated straight? For instance, in some photonic applications it’s helpful to have a shallow etch that appears on either side of the straight (often called a trench or sleeve). Additionally, it might be nice to have a Port on either end of the center section so we can snap other geometries to it. Let’s try adding something like that in:

p = gf.path.straight()

# Add a few "sections" to the cross-section
s0 = gf.Section(width=1, offset=0, layer=(1, 0), port_names=("in", "out"))
s1 = gf.Section(width=2, offset=2, layer=(2, 0))
s2 = gf.Section(width=2, offset=-2, layer=(2, 0))
x = gf.CrossSection(sections=(s0, s1, s2))

c = gf.path.extrude(p, cross_section=x)
c.plot()
../_images/38fbdf8b235fbf62d40bfef6c03fd9580c52d8f5dc4272edd9c9b62993a9f465.png
p = gf.path.arc()

# Combine the Path and the CrossSection
b = gf.path.extrude(p, cross_section=x)
b.plot()
../_images/349dc6e5a1f2cc4d7481d0e922571dc831dc4e45982a7c4030ed4a51c1e3a67a.png

Option 3: CrossSection with ComponentAlongPath#

You can also place components along a path, which is useful for wiring vias.

import gdsfactory as gf
from gdsfactory.cross_section import ComponentAlongPath

# Create the path
p = gf.path.straight()
p += gf.path.arc(10)
p += gf.path.straight()

# Define a cross-section with a via
via = ComponentAlongPath(
    component=gf.c.rectangle(size=(1, 1), centered=True), spacing=5, padding=2
)
s = gf.Section(width=0.5, offset=0, layer=(1, 0), port_names=("in", "out"))
x = gf.CrossSection(sections=(s,), components_along_path=(via,))

# Combine the path with the cross-section
c = gf.path.extrude(p, cross_section=x)
c.plot()
../_images/351af41c35e7c1d26f2507b52ec29b78a85d556bba24af0baaa08a469e402f18.png
import gdsfactory as gf
from gdsfactory.cross_section import ComponentAlongPath

# Create the path
p = gf.path.straight()
p += gf.path.arc(10)
p += gf.path.straight()

# Define a cross-section with a via
via0 = ComponentAlongPath(component=gf.c.via1(), spacing=5, padding=2, offset=0)
viap = ComponentAlongPath(component=gf.c.via1(), spacing=5, padding=2, offset=+2)
vian = ComponentAlongPath(component=gf.c.via1(), spacing=5, padding=2, offset=-2)
x = gf.CrossSection(sections=[s], components_along_path=(via0, viap, vian))

# Combine the path with the cross-section
c = gf.path.extrude(p, cross_section=x)
c.plot()
../_images/30995446d3d98ec00dfb1e335bed62eac446655b79b357921b31c4576c005b92.png

Path#

You can pass append() lists of path segments. This makes it easy to combine paths very quickly. Below we show 3 examples using this functionality:

Example 1: Assemble a complex path by making a list of Paths and passing it to append()

import gdsfactory as gf

P = gf.Path()

# Create the basic Path components
left_turn = gf.path.euler(radius=4, angle=90)
right_turn = gf.path.euler(radius=4, angle=-90)
straight = gf.path.straight(length=10)

# Assemble a complex path by making list of Paths and passing it to `append()`
P.append(
    [
        straight,
        left_turn,
        straight,
        right_turn,
        straight,
        straight,
        right_turn,
        left_turn,
        straight,
    ]
)

f = P.plot()
../_images/2e53f195aa15d9fcfd349d07b56057d166f8a3af86172cb67859abb993e1f5b4.png
P = (
    straight
    + left_turn
    + straight
    + right_turn
    + straight
    + straight
    + right_turn
    + left_turn
    + straight
)
f = P.plot()
../_images/cc693530a0119e0b3b1d34a47b34bf0fa659babdf11d6e4aac51c236cc8baa6f.png

Example 2: Create an “S-turn” just by making a list of [left_turn, right_turn]

P = gf.Path()

# Create an "S-turn" just by making a list
s_turn = [left_turn, right_turn]

P.append(s_turn)
f = P.plot()
../_images/bcf2e2471a96ddf5f9cfa3f72e52d7b245cae2d733f9af3d2bc130226f634585.png

Example 3: Repeat the S-turn 3 times by nesting our S-turn list in another list

P = gf.Path()

# Create an "S-turn" using a list
s_turn = [left_turn, right_turn]

# Repeat the S-turn 3 times by nesting our S-turn list 3x times in another list
triple_s_turn = [s_turn, s_turn, s_turn]

P.append(triple_s_turn)
f = P.plot()
../_images/b50794ed43b957f23fd0b2ec98dd8bff6425c1adc726350a394822c9e67e4295.png

Note you can also use the Path() constructor to immediately construct your Path:

P = gf.Path([straight, left_turn, straight, right_turn, straight])
f = P.plot()
../_images/01ae1508ed033c979e934f4aaa77f6cd962d44f265771417400dd71b1dfe681e.png

Waypoint smooth paths#

You can also build smooth paths between waypoints with the smooth() function

points = np.array([(20, 10), (40, 10), (20, 40), (50, 40), (50, 20), (70, 20)])
plt.plot(points[:, 0], points[:, 1], ".-")
plt.axis("equal")
(np.float64(17.5), np.float64(72.5), np.float64(8.5), np.float64(41.5))
../_images/fe80bc32adf7af900bf7497a0ff1b733ed7bf48fae64dae15673d7ecee783e42.png
points = np.array([(20, 10), (40, 10), (20, 40), (50, 40), (50, 20), (70, 20)])

P = gf.path.smooth(
    points=points,
    radius=2,
    bend=gf.path.euler,  # Alternatively, use pp.arc
    use_eff=False,
)
f = P.plot()
../_images/cff60cdfbf84a5508027585d2a8de485bcc852111955a23966010b572f96ee0f.png

Waypoint sharp paths#

It’s also possible to make more traditional angular paths (e.g. electrical wires) in a few different ways.

Example 1: Using a simple list of points

P = gf.Path([(20, 10), (30, 10), (40, 30), (50, 30), (50, 20), (70, 20)])
f = P.plot()
../_images/be6fa9a5637071ea1f4e480f7737328d60f3bbb905eaacd0fe622cea8ebe0868.png

Example 2: Using the “turn and move” method, where you manipulate the end angle of the Path so that when you append points to it, they’re in the correct direction. Note: It is crucial that the number of points per straight section is set to 2 (gf.path.straight(length, num_pts = 2)) otherwise the extrusion algorithm will show defects.

P = gf.Path()
P += gf.path.straight(length=10, npoints=2)
P.end_angle += 90  # "Turn" 90 deg (left)
P += gf.path.straight(length=10, npoints=2)  # "Walk" length of 10
P.end_angle += -135  # "Turn" -135 degrees (right)
P += gf.path.straight(length=15, npoints=2)  # "Walk" length of 10
P.end_angle = 0  # Force the direction to be 0 degrees
P += gf.path.straight(length=10, npoints=2)  # "Walk" length of 10
f = P.plot()
../_images/4f6265ca486c00c82760b76637a8905c0b8512d5b8e932a8088ba25b5258d83b.png
s0 = gf.Section(width=1, offset=0, layer=(1, 0))
s1 = gf.Section(width=1.5, offset=2.5, layer=(2, 0))
s2 = gf.Section(width=1.5, offset=-2.5, layer=(3, 0))
X = gf.CrossSection(sections=[s0, s1, s2])
c = gf.path.extrude(P, X)
c.plot()
../_images/ef3e461c06df55561b084dc4b527d5ad2af2727df3100410c86ea9b6364ee3ea.png

Custom curves#

Now let’s have some fun and try to make a loop-de-loop structure with parallel straights and several Ports.

To create a new type of curve we simply make a function that produces an array of points. The best way to do that is to create a function which allows you to specify a large number of points along that curve – in the case below, the looploop() function outputs 1000 points along a looping path. Later, if we want reduce the number of points in our geometry we can trivially simplify the path.

def looploop(num_pts=1000):
    """Simple limacon looping curve."""
    t = np.linspace(-np.pi, 0, num_pts)
    r = 20 + 25 * np.sin(t)
    x = r * np.cos(t)
    y = r * np.sin(t)
    return np.array((x, y)).T


# Create the path points
P = gf.Path()
P.append(gf.path.arc(radius=10, angle=90))
P.append(gf.path.straight())
P.append(gf.path.arc(radius=5, angle=-90))
P.append(looploop(num_pts=1000))
P.rotate(-45)

# Create the crosssection
s0 = gf.Section(width=1, offset=0, layer=(1, 0), port_names=("in", "out"))
s1 = gf.Section(width=0.5, offset=2, layer=(2, 0))
s2 = gf.Section(width=0.5, offset=4, layer=(3, 0))
s3 = gf.Section(width=1, offset=0, layer=(4, 0))
X = gf.CrossSection(sections=(s0, s1, s2, s3))

c = gf.path.extrude(P, X)
c.plot()
../_images/b8a15b1c2965a047ec9992cea1e559e9b3d6006920eef7d6aadd32a71d2e8cac.png

You can create Paths from any array of points – just be sure that they form smooth curves! If we examine our path P we can see that all we’ve simply created a long list of points:

path_points = P.points  # Curve points are stored as a numpy array in P.points
print(np.shape(path_points))  # The shape of the array is Nx2
print(len(P))  # Equivalently, use len(P) to see how many points are inside
(1092, 2)
1092

Simplifying / reducing point usage#

One of the chief concerns of generating smooth curves is that too many points are generated, inflating file sizes and making boolean operations computationally expensive. Fortunately, PHIDL has a fast implementation of the Ramer-Douglas–Peucker algorithm that lets you reduce the number of points in a curve without changing its shape. All that needs to be done is when you made a component component() extruding the path with a cross_section, you specify the simplify argument.

If we specify simplify = 1e-3, the number of points in the line drops from 12,000 to 4,000, and the remaining points form a line that is identical to within 1e-3 distance from the original (for the default 1 micron unit size, this corresponds to 1 nanometer resolution):

# The remaining points form a identical line to within `1e-3` from the original
c = gf.path.extrude(p=P, cross_section=X, simplify=1e-3)
c.plot()
../_images/41f148066b52a650e99c513d551d74249d7a749d5f7eb1574a1f4fd5bf3820ba.png

Let’s say we need fewer points. We can increase the simplify tolerance by specifying simplify = 1e-1. This drops the number of points to ~400 points form a line that is identical to within 1e-1 distance from the original:

c = gf.path.extrude(P, cross_section=X, simplify=1e-1)
c.plot()
../_images/d0b06720373e0d188d26fadcaca791babd21fb580cd6c415e6fe622492c25d33.png

Taken to absurdity, what happens if we set simplify = 0.3? Once again, the ~200 remaining points form a line that is within 0.3 units from the original – but that line looks pretty bad.

c = gf.path.extrude(P, cross_section=X, simplify=0.3)
c.plot()
../_images/9030608c18a1e742db4cf49c9fb2f0d79fe15ce856149dcc1d1babe69f1c8a21.png

Curvature calculation#

The Path class has a curvature() method that computes the curvature K of your smooth path (K = 1/(radius of curvature)). This can be helpful for verifying that your curves transition smoothly such as in track-transition curves (also known as “Euler” bends in the photonics world). Euler bends have lower mode-mismatch loss as explained in this paper

Note this curvature is numerically computed so areas where the curvature jumps instantaneously (such as between an arc and a straight segment) will be slightly interpolated, and sudden changes in point density along the curve can cause discontinuities.

straight_points = 100

P = gf.Path()
P.append(
    [
        gf.path.straight(
            length=10, npoints=straight_points
        ),  # Should have a curvature of 0
        gf.path.euler(
            radius=3, angle=90, p=0.5, use_eff=False
        ),  # Euler straight-to-bend transition with min. bend radius of 3 (max curvature of 1/3)
        gf.path.straight(
            length=10, npoints=straight_points
        ),  # Should have a curvature of 0
        gf.path.arc(radius=10, angle=90),  # Should have a curvature of 1/10
        gf.path.arc(radius=5, angle=-90),  # Should have a curvature of -1/5
        gf.path.straight(
            length=2, npoints=straight_points
        ),  # Should have a curvature of 0
    ]
)

f = P.plot()
../_images/bace74bb495ae816f394d32bdbc1911b234e36c3821a85409892c3bd93598d81.png

Arc paths are equivalent to bend_circular and euler paths are equivalent to bend_euler

s, K = P.curvature()
plt.plot(s, K, ".-")
plt.xlabel("Position along curve (arc length)")
plt.ylabel("Curvature")
Text(0, 0.5, 'Curvature')
../_images/7e07446f110ff5b5f6e5f8dd7e340f71c856a4d4939b8a44c8d8e5fc7e4eb459.png
P = gf.path.euler(radius=3, angle=90, p=1.0, use_eff=False)
P.append(gf.path.euler(radius=3, angle=90, p=0.2, use_eff=False))
P.append(gf.path.euler(radius=3, angle=90, p=0.0, use_eff=False))
P.plot()
../_images/d4e5c075b4a88430860a09f0755606471179d102fdb15e86c73363443be0da55.png
s, K = P.curvature()
plt.plot(s, K, ".-")
plt.xlabel("Position along curve (arc length)")
plt.ylabel("Curvature")
Text(0, 0.5, 'Curvature')
../_images/75cb3405330d2bcd21d5e5ed6aeda910f19f1589065bb8ec5a3403f342505c04.png

You can compare two 90 degrees euler bend with 180 euler bend.

A 180 euler bend is shorter, and has less loss than two 90 degrees euler bend.

straight_points = 100

P = gf.Path()
P.append(
    [
        gf.path.euler(radius=3, angle=90, p=1, use_eff=False),
        gf.path.euler(radius=3, angle=90, p=1, use_eff=False),
        gf.path.straight(length=6, npoints=100),
        gf.path.euler(radius=3, angle=180, p=1, use_eff=False),
    ]
)

f = P.plot()
../_images/79dcecbf8ec640927319ebec86b3f438011e90aede5868c59f34d062692bb4bc.png
s, K = P.curvature()
plt.plot(s, K, ".-")
plt.xlabel("Position along curve (arc length)")
plt.ylabel("Curvature")
Text(0, 0.5, 'Curvature')
../_images/b5c2da455cea5b26fe810a5687bc37abc864fad834712e95b04dd150b3248cfc.png

Transitioning between cross-sections#

Often a critical element of building paths is being able to transition between cross-sections. You can use the transition() function to do exactly this: you simply feed it two CrossSections and it will output a new CrossSection that smoothly transitions between the two.

Let’s start off by creating two cross-sections we want to transition between. Note we give all the cross-sectional elements names by specifying the name argument in the add() function – this is important because the transition function will try to match names between the two input cross-sections, and any names not present in both inputs will be skipped.

# Create our first CrossSection
import gdsfactory as gf

s0 = gf.Section(width=1.2, offset=0, layer=(2, 0), name="core", port_names=("o1", "o2"))
s1 = gf.Section(width=2.2, offset=0, layer=(3, 0), name="etch")
s2 = gf.Section(width=1.1, offset=3, layer=(1, 0), name="wg2")
X1 = gf.CrossSection(sections=[s0, s1, s2])

# Create the second CrossSection that we want to transition to
s0 = gf.Section(width=1, offset=0, layer=(2, 0), name="core", port_names=("o1", "o2"))
s1 = gf.Section(width=3.5, offset=0, layer=(3, 0), name="etch")
s2 = gf.Section(width=3, offset=5, layer=(1, 0), name="wg2")
X2 = gf.CrossSection(sections=[s0, s1, s2])

# To show the cross-sections, let's create two Paths and
# create Components by extruding them
P1 = gf.path.straight(length=5)
P2 = gf.path.straight(length=5)
wg1 = gf.path.extrude(P1, X1)
wg2 = gf.path.extrude(P2, X2)

# Place both cross-section Components and quickplot them
c = gf.Component()
wg1ref = c << wg1
wg2ref = c << wg2
wg2ref.movex(7.5)

c.plot()
../_images/f68668012aba44dcdbd3964e1650f10e1b145c2f1f1eee5353582e672ca84646.png

Now let’s create the transitional CrossSection by calling transition() with these two CrossSections as input. If we want the width to vary as a smooth sinusoid between the sections, we can set width_type to 'sine' (alternatively we could also use 'linear').

# Create the transitional CrossSection
Xtrans = gf.path.transition(cross_section1=X1, cross_section2=X2, width_type="sine")

# Create a Path for the transitional CrossSection to follow
P3 = gf.path.straight(length=15, npoints=100)

# Use the transitional CrossSection to create a Component
straight_transition = gf.path.extrude_transition(P3, Xtrans)
straight_transition.plot()
../_images/484833d5a7368f69e976d425e198c274530df5e01770883e44fe200e7be4d1c4.png

Now that we have all of our components, let’s connect() everything and see what it looks like

c = gf.Component("transition_demo")

wg1ref = c << wg1
wgtref = c << straight_transition
wg2ref = c << wg2

wgtref.connect("o1", wg1ref.ports["o2"])
wg2ref.connect("o1", wgtref.ports["o2"])

c.plot()
../_images/cca7fae4c477888ad000fb3ed2050b83e81de2143a0c90eafbdbd7be73e811bb.png

Note that since transition() outputs a Transition, we can make the transition follow an arbitrary path:

# Transition along a curving Path
P4 = gf.path.euler(radius=25, angle=45, p=0.5, use_eff=False)
wg_trans = gf.path.extrude_transition(P4, Xtrans)

c = gf.Component("demo_transition")
wg1_ref = c << wg1  # First cross-section Component
wg2_ref = c << wg2
wgt_ref = c << wg_trans

wgt_ref.connect("o1", wg1_ref.ports["o2"])
wg2_ref.connect("o1", wgt_ref.ports["o2"])

c.plot()
../_images/a22d50aaa0eb0f14e933d0d510cccea2dcbf5781fe6e7b2b21f5b0953b0d07bd.png

You can also extrude an arbitrary Transition:

w1 = 1
w2 = 5
x1 = gf.get_cross_section("strip", width=w1)
x2 = gf.get_cross_section("strip", width=w2)
transition = gf.path.transition(x1, x2)
p = gf.path.arc(radius=10)
c = gf.path.extrude_transition(p, transition)
c.plot()
../_images/82d8017253c6e5f6391ff65dcf7bd6b94addc9b7e7fef310316601e9cd63f81b.png

Variable width / offset#

In some instances, you may want to vary the width or offset of the path’s cross- section as it travels. This can be accomplished by giving the CrossSection arguments that are functions or lists. Let’s say we wanted a width that varies sinusoidally along the length of the Path. To do this, we need to make a width function that is parameterized from 0 to 1: for an example function my_width_fun(t) where the width at t==0 is the width at the beginning of the Path and the width at t==1 is the width at the end.

import numpy as np

import gdsfactory as gf


def my_custom_width_fun(t):
    # Note: Custom width/offset functions MUST be vectorizable--you must be able
    # to call them with an array input like my_custom_width_fun([0, 0.1, 0.2, 0.3, 0.4])
    num_periods = 5
    return 3 + np.cos(2 * np.pi * t * num_periods)


# Create the Path
P = gf.path.straight(length=40, npoints=30)

# Create two cross-sections: one fixed width, one modulated by my_custom_offset_fun
s0 = gf.Section(width=3, offset=-6, layer=(2, 0))
s1 = gf.Section(width=0, width_function=my_custom_width_fun, offset=0, layer=(1, 0))
X = gf.CrossSection(sections=(s0, s1))

# Extrude the Path to create the Component
c = gf.path.extrude(P, cross_section=X)
c.plot()
../_images/8a1dd6be2cb683318d8ab05c58c65930a73a9510aa2f0337e650c2b586273c61.png

We can do the same thing with the offset argument:

def my_custom_offset_fun(t):
    # Note: Custom width/offset functions MUST be vectorizable--you must be able
    # to call them with an array input like my_custom_offset_fun([0, 0.1, 0.2, 0.3, 0.4])
    num_periods = 3
    return 3 + np.cos(2 * np.pi * t * num_periods)


# Create the Path
P = gf.path.straight(length=40, npoints=30)

# Create two cross-sections: one fixed offset, one modulated by my_custom_offset_fun
s0 = gf.Section(width=1, offset=0, layer=(1, 0))
s1 = gf.Section(
    width=1,
    offset_function=my_custom_offset_fun,
    layer=(2, 0),
    port_names=("clad1", "clad2"),
)
X = gf.CrossSection(sections=(s0, s1))

# Extrude the Path to create the Component
c = gf.path.extrude(P, cross_section=X)
c.plot()
../_images/c25d2484c5b0b5d1e4532410a627340bb13c4c0da45826f07da4288d5610208a.png

Offsetting a Path#

Sometimes it’s convenient to start with a simple Path and offset the line it follows to suit your needs (without using a custom-offset CrossSection). Here, we start with two copies of simple straight Path and use the offset() function to directly modify each Path.

def my_custom_offset_fun(t):
    # Note: Custom width/offset functions MUST be vectorizable--you must be able
    # to call them with an array input like my_custom_offset_fun([0, 0.1, 0.2, 0.3, 0.4])
    num_periods = 3
    return 2 + np.cos(2 * np.pi * t * num_periods)


P1 = gf.path.straight(npoints=101)
P1.offset(offset=my_custom_offset_fun)
f = P1.plot()
../_images/a6c5f9f6ca47f2aeb5cdc9f6796e549af80aba0db56765e97b25cb6e29e1d618.png
P2 = P1.copy()  # Make a copy of the Path
P2.mirror((1, 0))  # reflect across X-axis
f2 = P2.plot()
../_images/a660355558a464aee5953889e9b1630c77a2521152ef756535c260db7107ee29.png
# Create the Path
P = gf.path.arc(radius=10, angle=45)

# Create two cross-sections: one fixed width, one modulated by my_custom_offset_fun
s0 = gf.Section(width=1, offset=3, layer=(2, 0), name="waveguide")
s1 = gf.Section(width=1, offset=0, layer=(1, 0), name="heater", port_names=("o1", "o2"))
X = gf.CrossSection(sections=(s0, s1))
c = gf.path.extrude(P, X)
c.plot()
../_images/a52d9b525ab94f5e05562a5bf6a1a4f0a1b982e3e9eb702632100c1be68c2e2e.png
P = gf.Path()
P.append(gf.path.arc(radius=10, angle=90))  # Circular arc
P.append(gf.path.straight(length=10))  # Straight section
P.append(gf.path.euler(radius=3, angle=-90))  # Euler bend (aka "racetrack" curve)
P.append(gf.path.straight(length=40))
P.append(gf.path.arc(radius=8, angle=-45))
P.append(gf.path.straight(length=10))
P.append(gf.path.arc(radius=8, angle=45))
P.append(gf.path.straight(length=10))

f = P.plot()
../_images/405235a0ebfd8f2c57e78df77f277aea244d860e3f7022e3ad81ca5c6b60d4ae.png
c = gf.path.extrude(P, width=1, layer=(2, 0))
c.plot()
../_images/197b328073d75e6889b3ecb0079c8386b7f25f0772ae31dc425ed54ad3b00b81.png
s0 = gf.Section(width=2, offset=0, layer=(2, 0))
xs = gf.CrossSection(sections=(s0,))
c = gf.path.extrude(P, xs)
c.plot()
../_images/c741b50113ab7f591021fa80e4108ae8ef0023ed35df4d12692f18389f2e23f8.png
p = gf.path.straight(length=10, npoints=101)
s0 = gf.Section(width=1, offset=0, layer=(1, 0), port_names=("o1", "o2"), name="core")
s1 = gf.Section(width=3, offset=0, layer=(3, 0), name="slab")
x1 = gf.CrossSection(sections=(s0, s1))
c = gf.path.extrude(p, x1)
c.plot()
../_images/56bbaef67d615c6bb9d457b17239dbba478b645bae47c874849c044469fe54a8.png
s0 = gf.Section(
    width=1 + 3, offset=0, layer=(1, 0), port_names=("o1", "o2"), name="core"
)
s1 = gf.Section(width=3 + 3, offset=0, layer=(3, 0), name="slab")
x2 = gf.CrossSection(sections=(s0, s1))
c2 = gf.path.extrude(p, x2)
c2.plot()
../_images/f2b6fe0bb4a54c1b3a9903e812612613a51329b86fd7f782118ac07f7155332f.png
t = gf.path.transition(x1, x2)
c3 = gf.path.extrude_transition(p, t)
c3.plot()
../_images/8d6259c80616395272518159a2fa444f1b6affd7fa4927b8a315818bcd13a6ee.png
c4 = gf.Component()
start_ref = c4 << c
trans_ref = c4 << c3
end_ref = c4 << c2

trans_ref.connect("o1", start_ref.ports["o2"])
end_ref.connect("o1", trans_ref.ports["o2"])
c4.plot()
../_images/7d580e5b771ebae5192640ab2606443877bd2a8b78c611bb67c9b9bf854d3a49.png

Creating new cross_sections#

You can create functions that return a cross_section in 2 ways:

  • Customize an existing cross-section for example gf.cross_section.strip

  • Define a function that returns a cross_section

  • Define a CrossSection object

What parameters do cross_section take?

help(gf.cross_section.cross_section)
Help on function cross_section in module gdsfactory.cross_section:

cross_section(width: 'float' = 0.5, offset: 'float' = 0, layer: 'typings.LayerSpec' = 'WG', sections: 'Sections | None' = None, port_names: 'typings.IOPorts' = ('o1', 'o2'), port_types: 'typings.IOPorts' = ('optical', 'optical'), bbox_layers: 'typings.LayerSpecs | None' = None, bbox_offsets: 'typings.Floats | None' = None, cladding_layers: 'typings.LayerSpecs | None' = None, cladding_offsets: 'typings.Floats | None' = None, cladding_simplify: 'typings.Floats | None' = None, cladding_centers: 'typings.Floats | None' = None, radius: 'float | None' = 10.0, radius_min: 'float | None' = None, main_section_name: 'str' = '_default') -> 'CrossSection'
    Return CrossSection.
    
    Args:
        width: main Section width (um).
        offset: main Section center offset (um).
        layer: main section layer.
        sections: list of Sections(width, offset, layer, ports).
        port_names: for input and output ('o1', 'o2').
        port_types: for input and output: electrical, optical, vertical_te ...
        bbox_layers: list of layers bounding boxes to extrude.
        bbox_offsets: list of offset from bounding box edge.
        cladding_layers: list of layers to extrude.
        cladding_offsets: list of offset from main Section edge.
        cladding_simplify: Optional Tolerance value for the simplification algorithm.                 All points that can be removed without changing the resulting.                 polygon by more than the value listed here will be removed.
        cladding_centers: center offset for each cladding layer. Defaults to 0.
        radius: routing bend radius (um).
        radius_min: min acceptable bend radius.
        main_section_name: name of the main section. Defaults to _default
    
    .. plot::
        :include-source:
    
        import gdsfactory as gf
    
        xs = gf.cross_section.cross_section(width=0.5, offset=0, layer='WG')
        p = gf.path.arc(radius=10, angle=45)
        c = p.extrude(xs)
        c.plot()
    
    .. code::
    
    
           ┌────────────────────────────────────────────────────────────┐
           │                                                            │
           │                                                            │
           │                   boox_layer                               │
           │                                                            │
           │         ┌──────────────────────────────────────┐           │
           │         │                            ▲         │bbox_offset│
           │         │                            │         ├──────────►│
           │         │           cladding_offset  │         │           │
           │         │                            │         │           │
           │         ├─────────────────────────▲──┴─────────┤           │
           │         │                         │            │           │
        ─ ─┤         │           core   width  │            │           ├─ ─ center
           │         │                         │            │           │
           │         ├─────────────────────────▼────────────┤           │
           │         │                                      │           │
           │         │                                      │           │
           │         │                                      │           │
           │         │                                      │           │
           │         └──────────────────────────────────────┘           │
           │                                                            │
           │                                                            │
           │                                                            │
           └────────────────────────────────────────────────────────────┘
import gdsfactory as gf
from gdsfactory.cross_section import CrossSection, cross_section, xsection
from gdsfactory.typings import LayerSpec

@xsection
def pin(
    width: float = 0.5,
    layer: LayerSpec = "WG",
    radius: float = 10.0,
    radius_min: float = 5,
    layer_p: LayerSpec = (21, 0),
    layer_n: LayerSpec = (20, 0),
    width_p: float = 2,
    width_n: float = 2,
    offset_p: float = 1,
    offset_n: float = -1,
    **kwargs,
) -> CrossSection:
    """Return PIN cross_section."""
    sections = (
        gf.Section(layer=layer_p, width=width_p, offset=offset_p),
        gf.Section(layer=layer_n, width=width_n, offset=offset_n),
    )

    return cross_section(
        width=width,
        layer=layer,
        radius=radius,
        radius_min=radius_min,
        sections=sections,
        **kwargs,
    )
c = gf.components.straight(cross_section=pin)
c.plot()
../_images/ae0ec5cd4e238b0885bfa9fcd199aafe461c1af34423b9e0a185170af4be7789.png
pin5 = gf.components.straight(cross_section=pin, length=5)
pin5.plot()
../_images/341da0895013093e91cd37ba600ce33ee251e9a972d32801fb7ba62d52a65d37.png
pin5 = gf.components.straight(cross_section="pin", length=5)
pin5.plot()
../_images/341da0895013093e91cd37ba600ce33ee251e9a972d32801fb7ba62d52a65d37.png

finally, you can also pass most components Dict that define the cross-section

# Create our first CrossSection
s0 = gf.Section(width=0.5, offset=0, layer=(1, 0), name="wg", port_names=("o1", "o2"))
s1 = gf.Section(width=0.2, offset=0, layer=(3, 0), name="slab")
x1 = gf.CrossSection(sections=(s0, s1))

# Create the second CrossSection that we want to transition to
s0 = gf.Section(width=0.5, offset=0, layer=(1, 0), name="wg", port_names=("o1", "o2"))
s1 = gf.Section(width=3.0, offset=0, layer=(3, 0), name="slab")
x2 = gf.CrossSection(sections=(s0, s1))

# To show the cross-sections, let's create two Paths and create Components by extruding them
p1 = gf.path.straight(length=5)
p2 = gf.path.straight(length=5)
wg1 = gf.path.extrude(p1, x1)
wg2 = gf.path.extrude(p2, x2)

# Place both cross-section Components and quickplot them
c = gf.Component()
wg1ref = c << wg1
wg2ref = c << wg2
wg2ref.movex(7.5)

# Create the transitional CrossSection
xtrans = gf.path.transition(cross_section1=x1, cross_section2=x2, width_type="linear")
# Create a Path for the transitional CrossSection to follow
p3 = gf.path.straight(length=15, npoints=100)

# Use the transitional CrossSection to create a Component
straight_transition = gf.path.extrude_transition(p3, xtrans)
straight_transition.plot()
../_images/b408d59933599a3061ea2dc9b418a4441118a105a234fa8005637aa9d33eac0f.png
# Create the transitional CrossSection
xtrans = gf.path.transition(
    cross_section1=x1, cross_section2=x2, width_type="parabolic"
)
# Create a Path for the transitional CrossSection to follow
p3 = gf.path.straight(length=15, npoints=100)

# Use the transitional CrossSection to create a Component
straight_transition = gf.path.extrude_transition(p3, xtrans)
straight_transition.plot()
../_images/838e9420185cc04d8b34d555b7ac8a8c5d9e06f881d92b5e62183521fdbba5b7.png
# Create the transitional CrossSection
xtrans = gf.path.transition(cross_section1=x1, cross_section2=x2, width_type="sine")
# Create a Path for the transitional CrossSection to follow
p3 = gf.path.straight(length=15, npoints=100)

# Use the transitional CrossSection to create a Component
straight_transition = gf.path.extrude_transition(p3, xtrans)
straight_transition.plot()
../_images/2d0ac5adb49c32c84ebb1e1d765266d4fac71abf2031318eb98884c725365fc6.png
s = straight_transition.to_3d()
s.show()

The port location, width and orientation remains the same for a sheared component. However, an additional property, shear_angle is set to the value of the shear angle. In general, shear ports can be safely connected together.

bbox_layers vs cladding_layers#

For extruding waveguides you have two options:

  1. bbox_layers for squared bounding box

  2. cladding_layers for extruding a layer that follows the shape of the path.

xs_bbox = gf.cross_section.cross_section(bbox_layers=((3, 0),), bbox_offsets=(3,))
w1 = gf.components.bend_euler(cross_section=xs_bbox)
w1.plot()
../_images/d68446aa3f20d8a2f607142dd96132076a055cf0adcab69482e37a3de5addbc2.png
xs_clad = gf.cross_section.cross_section(cladding_layers=[(3, 0)], cladding_offsets=[3])
w2 = gf.components.bend_euler(cross_section=xs_clad)
w2.plot()
../_images/2fe3d7d627900376e5ecd2c5c9b38a16e61d77d76d8862b5a0289f6a2ffda220.png

Insets#

It’s handy to be able to extrude a CrossSection along a Path, while each Section may have a particular inset relative to the main Section. An example of this is a waveguide with a heater.

import gdsfactory as gf


@xsection
def xs_waveguide_heater() -> gf.CrossSection:
    return gf.cross_section.cross_section(
        layer="WG",
        width=0.5,
        sections=(
            gf.cross_section.Section(
                name="heater",
                width=1,
                layer="HEATER",
                insets=(1, 2),
            ),
        ),
    )


c = gf.components.straight(cross_section=xs_waveguide_heater)
c.plot()
../_images/8091d08147197ef1815e48c79cc361eb1f0679a281f2f392517018f0517fa702.png
@xsection
def xs_waveguide_heater_with_ports() -> gf.CrossSection:
    return gf.cross_section.cross_section(
        layer="WG",
        width=0.5,
        sections=(
            gf.cross_section.Section(
                name="heater",
                width=1,
                layer="HEATER",
                insets=(1, 2),
                port_names=("e1", "e2"),
                port_types=("electrical", "electrical"),
            ),
        ),
    )


c = gf.components.straight(cross_section=xs_waveguide_heater_with_ports)
c.plot()
../_images/8091d08147197ef1815e48c79cc361eb1f0679a281f2f392517018f0517fa702.png